Search results
Results from the WOW.Com Content Network
17 indivisible camels. The 17-animal inheritance puzzle is a mathematical puzzle involving unequal but fair allocation of indivisible goods, usually stated in terms of inheritance of a number of large animals (17 camels, 17 horses, 17 elephants, etc.) which must be divided in some stated proportion among a number of beneficiaries.
Of the cleanly formulated Hilbert problems, numbers 3, 7, 10, 14, 17, 18, 19, and 20 have resolutions that are accepted by consensus of the mathematical community. Problems 1, 2, 5, 6, [ a ] 9, 11, 12, 15, 21, and 22 have solutions that have partial acceptance, but there exists some controversy as to whether they resolve the problems.
In 1888, Hilbert showed that every non-negative homogeneous polynomial in n variables and degree 2d can be represented as sum of squares of other polynomials if and only if either (a) n = 2 or (b) 2d = 2 or (c) n = 3 and 2d = 4. [2]
For instance, the first counterexample must be odd because f(2n) = n, smaller than 2n; and it must be 3 mod 4 because f 2 (4n + 1) = 3n + 1, smaller than 4n + 1. For each starting value a which is not a counterexample to the Collatz conjecture, there is a k for which such an inequality holds, so checking the Collatz conjecture for one starting ...
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Given a population of 13 coins in which it is known that 1 of the 13 is different (mass) from the rest, it is simple to determine which coin it is with a balance and 3 tests as follows: 1) Subdivide the coins in to 2 groups of 4 coins and a third group with the remaining 5 coins. 2) Test 1, Test the 2 groups of 4 coins against each other: a.
This problem is also known as the Cheating Husbands Problem, the Unfaithful Wives Problem, the Muddy Children Problem. It is logically identical to the Blue Eyes Problem. This problem also appears as a problem involving black hats and white hats in C. L. Liu's classic textbook 'Elements of Discrete Mathematics'. [17]
Of these, solutions for n = 2, 3, 4, 7, 19, and 37 achieve a packing density greater than any smaller number > 1. (Higher density records all have rattles.) [ 10 ] See also