enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.

  3. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    A 24×60 rectangular area can be divided into a grid of 12×12 squares, with two squares along one edge (24/12 = 2) and five squares along the other (60/12 = 5). The greatest common divisor of two numbers a and b is the product of the prime factors shared by the two numbers, where each prime factor can be repeated as many times as it divides ...

  4. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    the sequence of exponents must be non-increasing, that is ; otherwise, by exchanging two exponents we would again get a smaller number than n with the same number of divisors (for instance 18 = 2 1 × 3 2 may be replaced with 12 = 2 2 × 3 1; both have six divisors).

  5. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The first in decimal: 4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30 (sequence A046760 in the OEIS). An economical number has been defined as a frugal number, but also as a number that is either frugal or equidigital.

  6. Rod calculus - Wikipedia

    en.wikipedia.org/wiki/Rod_calculus

    The highest common factor is found by successive division with remainders until the last two remainders are identical. The animation on the right illustrates the algorithm for finding the highest common factor of ⁠ 32,450,625 / 59,056,400 ⁠ and reduction of a fraction. In this case the hcf is 25. Divide the numerator and denominator by 25.

  7. Bézout's identity - Wikipedia

    en.wikipedia.org/wiki/Bézout's_identity

    As an example, the greatest common divisor of 15 and 69 is 3, and 3 can be written as a combination of 15 and 69 as 3 = 15 × (−9) + 69 × 2, with Bézout coefficients −9 and 2. Many other theorems in elementary number theory , such as Euclid's lemma or the Chinese remainder theorem , result from Bézout's identity.

  8. Divisor - Wikipedia

    en.wikipedia.org/wiki/Divisor

    The divisors of 10 illustrated with Cuisenaire rods: 1, 2, 5, and 10. In mathematics, a divisor of an integer , also called a factor of , is an integer that may be multiplied by some integer to produce . [1] In this case, one also says that is a multiple of .

  9. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    x 2 − 5x − 6 = (12 x + 12) (⁠ 1 / 12 ⁠ x − ⁠ 1 / 2 ⁠) + 0 Since 12 x + 12 is the last nonzero remainder, it is a GCD of the original polynomials, and the monic GCD is x + 1 . In this example, it is not difficult to avoid introducing denominators by factoring out 12 before the second step.