Search results
Results from the WOW.Com Content Network
the k-element multisets with elements from an n-element set (k-combinations of n elements with repetitions) and the k-element subsets of an n+k−1-element set (k-combinations of n+k−1 elements without repetitions). (()) = (+) This file shows the bijection between
As a consequence, an infinite number of multisets exist that contain only elements a and b, but vary in the multiplicities of their elements: The set {a, b} contains only elements a and b, each having multiplicity 1 when {a, b} is seen as a multiset. In the multiset {a, a, b}, the element a has multiplicity 2, and b has multiplicity 1.
Rather, as explained under combinations, the number of n-multicombinations from a set with x elements can be seen to be the same as the number of n-combinations from a set with x + n − 1 elements. This reduces the problem to another one in the twelvefold way, and gives as result
A k-combination of a set S is a k-element subset of S: the elements of a combination are not ordered. Ordering the k-combinations of S in all possible ways produces the k-permutations of S. The number of k-combinations of an n-set, C(n,k), is therefore related to the number of k-permutations of n by: (,) = (,) (,) = _! =!
In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations).For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
A normal form for a group G with generating set S is a choice of one reduced word in S for each element of G. For example: For example: The words 1, i , j , ij are a normal form for the Klein four-group with S = { i , j } and 1 representing the empty word (the identity element for the group).
Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...