enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nested sampling algorithm - Wikipedia

    en.wikipedia.org/wiki/Nested_sampling_algorithm

    A NestedSampler is part of the Python toolbox BayesicFitting [9] for generic model fitting and evidence calculation. It is available on GitHub. An implementation in C++, named DIAMONDS, is on GitHub. A highly modular Python parallel example for statistical physics and condensed matter physics uses is on GitHub.

  3. Mixed-data sampling - Wikipedia

    en.wikipedia.org/wiki/Mixed-data_sampling

    The MIDAS can also be used for machine learning time series and panel data nowcasting. [6] [7] The machine learning MIDAS regressions involve Legendre polynomials.High-dimensional mixed frequency time series regressions involve certain data structures that once taken into account should improve the performance of unrestricted estimators in small samples.

  4. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    For example, the individual components of a differential white blood cell count must all add up to 100, because each is a percentage of the total. Data that is embedded in narrative text (e.g., interview transcripts) must be manually coded into discrete variables that a statistical or machine-learning package can deal with.

  5. Data mapper pattern - Wikipedia

    en.wikipedia.org/wiki/Data_mapper_pattern

    The goal of the pattern is to keep the in-memory representation and the persistent data store independent of each other and the data mapper itself. This is useful when one needs to model and enforce strict business processes on the data in the domain layer that do not map neatly to the persistent data store. [2]

  6. Gibbs sampling - Wikipedia

    en.wikipedia.org/wiki/Gibbs_sampling

    Gibbs sampling is named after the physicist Josiah Willard Gibbs, in reference to an analogy between the sampling algorithm and statistical physics.The algorithm was described by brothers Stuart and Donald Geman in 1984, some eight decades after the death of Gibbs, [1] and became popularized in the statistics community for calculating marginal probability distribution, especially the posterior ...

  7. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  8. Hamiltonian Monte Carlo - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_Monte_Carlo

    For example, in simulations at finite temperature the factor (with the Boltzmann constant) is directly absorbed into and . The algorithm requires a positive integer for number of leapfrog steps L {\displaystyle L} and a positive number for the step size Δ t {\displaystyle \Delta t} .

  9. Orange (software) - Wikipedia

    en.wikipedia.org/wiki/Orange_(software)

    Orange is an open-source software package released under GPL and hosted on GitHub.Versions up to 3.0 include core components in C++ with wrappers in Python.From version 3.0 onwards, Orange uses common Python open-source libraries for scientific computing, such as numpy, scipy and scikit-learn, while its graphical user interface operates within the cross-platform Qt framework.