Search results
Results from the WOW.Com Content Network
In computer science, the Knuth–Morris–Pratt algorithm (or KMP algorithm) is a string-searching algorithm that searches for occurrences of a "word" W within a main "text string" S by employing the observation that when a mismatch occurs, the word itself embodies sufficient information to determine where the next match could begin, thus bypassing re-examination of previously matched characters.
A string-searching algorithm, sometimes called string-matching algorithm, is an algorithm that searches a body of text for portions that match by pattern. A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet ( finite set ) Σ.
The two-way algorithm can be viewed as a combination of the forward-going Knuth–Morris–Pratt algorithm (KMP) and the backward-running Boyer–Moore string-search algorithm (BM). Like those two, the 2-way algorithm preprocesses the pattern to find partially repeating periods and computes “shifts” based on them, indicating what offset to ...
The first topics of the book are two basic string-searching algorithms for finding exactly-matching substrings, the Knuth–Morris–Pratt algorithm and the Boyer–Moore string-search algorithm. It then describes the suffix tree , an index for quickly looking up matching substrings, and two algorithms for constructing it.
Pages in category "String matching algorithms" The following 16 pages are in this category, out of 16 total. ... Knuth–Morris–Pratt algorithm; L. Levenshtein ...
Several string-matching algorithms, including the Knuth–Morris–Pratt algorithm and the Boyer–Moore string-search algorithm, reduce the worst-case time for string matching by extracting more information from each mismatch, allowing them to skip over positions of the text that are guaranteed not to match the pattern.
With online algorithms the pattern can be processed before searching but the text cannot. In other words, online techniques do searching without an index. Early algorithms for online approximate matching were suggested by Wagner and Fischer [3] and by Sellers. [2] Both algorithms are based on dynamic programming but solve
The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it. The figure on the right is the suffix tree for the strings "ABAB", "BABA" and "ABBA", padded with unique string ...