Search results
Results from the WOW.Com Content Network
A doubly stochastic matrix is a square matrix of nonnegative real numbers with each row and column summing to 1. A substochastic matrix is a real square matrix whose row sums are all ; In the same vein, one may define a probability vector as a vector whose elements are nonnegative real numbers which sum to 1. Thus, each row of a right ...
Stochastic (/ s t ə ˈ k æ s t ɪ k /; from Ancient Greek στόχος (stókhos) 'aim, guess') [1] is the property of being well-described by a random probability distribution. [1] Stochasticity and randomness are technically distinct concepts: the former refers to a modeling approach, while the latter describes phenomena; in everyday ...
In nuclear physics, random matrices were introduced by Eugene Wigner to model the nuclei of heavy atoms. [1] [2] Wigner postulated that the spacings between the lines in the spectrum of a heavy atom nucleus should resemble the spacings between the eigenvalues of a random matrix, and should depend only on the symmetry class of the underlying evolution. [4]
The term random function is also used to refer to a stochastic or random process, [25] [26] because a stochastic process can also be interpreted as a random element in a function space. [27] [28] The terms stochastic process and random process are used interchangeably, often with no specific mathematical space for the set that indexes the ...
Point processes: random arrangements of points in a space . They can be modelled as stochastic processes where the domain is a sufficiently large family of subsets of S, ordered by inclusion; the range is the set of natural numbers; and, if A is a subset of B, ƒ(A) ≤ ƒ(B) with probability 1. Poisson process
Doubly stochastic matrix — a non-negative matrix such that each row and each column sums to 1 (thus the matrix is both left stochastic and right stochastic) Fisher information matrix — a matrix representing the variance of the partial derivative, with respect to a parameter, of the log of the likelihood function of a random variable.
A Markov chain with two states, A and E. In probability, a discrete-time Markov chain (DTMC) is a sequence of random variables, known as a stochastic process, in which the value of the next variable depends only on the value of the current variable, and not any variables in the past.
The class of doubly stochastic matrices is a convex polytope known as the Birkhoff polytope.Using the matrix entries as Cartesian coordinates, it lies in an ()-dimensional affine subspace of -dimensional Euclidean space defined by independent linear constraints specifying that the row and column sums all equal 1.