enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    The value (,) of the Hamiltonian is the total energy of the system, in this case the sum of kinetic and potential energy, traditionally denoted T and V, respectively. Here p is the momentum mv and q is the space coordinate.

  3. Hamiltonian (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_(quantum...

    The Hamiltonian of a system represents the total energy of the system; that is, the sum of the kinetic and potential energies of all particles associated with the system. . The Hamiltonian takes different forms and can be simplified in some cases by taking into account the concrete characteristics of the system under analysis, such as single or several particles in the system, interaction ...

  4. Action-angle coordinates - Wikipedia

    en.wikipedia.org/wiki/Action-angle_coordinates

    Action angles result from a type-2 canonical transformation where the generating function is Hamilton's characteristic function (not Hamilton's principal function ).Since the original Hamiltonian does not depend on time explicitly, the new Hamiltonian (,) is merely the old Hamiltonian (,) expressed in terms of the new canonical coordinates, which we denote as (the action angles, which are the ...

  5. Hamiltonian field theory - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_field_theory

    The Hamiltonian for a system of discrete particles is a function of their generalized coordinates and conjugate momenta, and possibly, time. For continua and fields, Hamiltonian mechanics is unsuitable but can be extended by considering a large number of point masses, and taking the continuous limit, that is, infinitely many particles forming a continuum or field.

  6. Interaction picture - Wikipedia

    en.wikipedia.org/wiki/Interaction_picture

    Where the Hamiltonian in this case is the QED interaction Hamiltonian, but it can also be a generic interaction, and is a spacelike surface that is passing through the point . The derivative formally represents a variation over that surface given fixed. It is difficult to give a precise mathematical formal interpretation of this equation.

  7. Poisson bracket - Wikipedia

    en.wikipedia.org/wiki/Poisson_bracket

    Such constants of motion will commute with the Hamiltonian under the Poisson bracket. Suppose some function f ( p , q ) {\displaystyle f(p,q)} is a constant of motion. This implies that if p ( t ) , q ( t ) {\displaystyle p(t),q(t)} is a trajectory or solution to Hamilton's equations of motion , then 0 = d f d t {\displaystyle 0={\frac {df}{dt ...

  8. Hamiltonian system - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_system

    A Hamiltonian system is a dynamical system governed by Hamilton's equations. In physics , this dynamical system describes the evolution of a physical system such as a planetary system or an electron in an electromagnetic field .

  9. Unitary transformation (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Unitary_transformation...

    It does this by relating changes in the state of the system to the energy in the system (given by an operator called the Hamiltonian). Therefore, once the Hamiltonian is known, the time dynamics are in principle known. All that remains is to plug the Hamiltonian into the Schrödinger equation and solve for the system state as a function of time.