enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Closeness (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Closeness_(mathematics)

    Closeness is a basic concept in topology and related areas in mathematics.Intuitively, we say two sets are close if they are arbitrarily near to each other. The concept can be defined naturally in a metric space where a notion of distance between elements of the space is defined, but it can be generalized to topological spaces where we have no concrete way to measure distances.

  3. Closure (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Closure_(mathematics)

    Conversely, if closed sets are given and every intersection of closed sets is closed, then one can define a closure operator C such that () is the intersection of the closed sets containing X. This equivalence remains true for partially ordered sets with the greatest-lower-bound property , if one replace "closed sets" by "closed elements" and ...

  4. Glossary of mathematical jargon - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    Smoothness is a concept which mathematics has endowed with many meanings, from simple differentiability to infinite differentiability to analyticity, and still others which are more complicated. Each such usage attempts to invoke the physically intuitive notion of smoothness.

  5. Glossary of general topology - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_general_topology

    Absolutely closed See H-closed Accessible See . Accumulation point See limit point. Alexandrov topology The topology of a space X is an Alexandrov topology (or is finitely generated) if arbitrary intersections of open sets in X are open, or equivalently, if arbitrary unions of closed sets are closed, or, again equivalently, if the open sets are the upper sets of a poset.

  6. Comparison of topologies - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_topologies

    In the following, it doesn't matter which definition is used.) For definiteness the reader should think of a topology as the family of open sets of a topological space, since that is the standard meaning of the word "topology". Let τ 1 and τ 2 be two topologies on a set X such that τ 1 is contained in τ 2:

  7. Topological space - Wikipedia

    en.wikipedia.org/wiki/Topological_space

    In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance.More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms ...

  8. Near sets - Wikipedia

    en.wikipedia.org/wiki/Near_sets

    From a spatial point of view, nearness (a.k.a. proximity) is considered a generalization of set intersection.For disjoint sets, a form of nearness set intersection is defined in terms of a set of objects (extracted from disjoint sets) that have similar features within some tolerance (see, e.g., §3 in).

  9. Closed set - Wikipedia

    en.wikipedia.org/wiki/Closed_set

    In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. [1] [2] In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation.