Search results
Results from the WOW.Com Content Network
A link/cut tree is a data structure for representing a forest, a set of rooted trees, and offers the following operations: Add a tree consisting of a single node to the forest. Given a node in one of the trees, disconnect it (and its subtree) from the tree of which it is part. Attach a node to another node as its child.
A recursive tree is a labeled rooted tree where the vertex labels respect the tree order (i.e., if u < v for two vertices u and v, then the label of u is smaller than the label of v). In a rooted tree, the parent of a vertex v is the vertex connected to v on the path to the root; every vertex has a unique parent, except the root has no parent. [24]
This unsorted tree has non-unique values (e.g., the value 2 existing in different nodes, not in a single node only) and is non-binary (only up to two children nodes per parent node in a binary tree). The root node at the top (with the value 2 here), has no parent as it is the highest in the tree hierarchy.
A cutpoint, cut vertex, or articulation point of a graph G is a vertex that is shared by two or more blocks. The structure of the blocks and cutpoints of a connected graph can be described by a tree called the block-cut tree or BC-tree. This tree has a vertex for each block and for each articulation point of the given graph.
Label each split component with a P (a two-vertex split component with multiple edges), an S (a split component in the form of a triangle), or an R (any other split component). While there exist two split components that share a linked pair of virtual edges, and both components have type S or both have type P, merge them into a single larger ...
When modelling relations between two different classes of objects, bipartite graphs very often arise naturally. For instance, a graph of football players and clubs, with an edge between a player and a club if the player has played for that club, is a natural example of an affiliation network, a type of bipartite graph used in social network analysis.
In either case, one can form a spanning tree by connecting each vertex, other than the root vertex v, to the vertex from which it was discovered. This tree is known as a depth-first search tree or a breadth-first search tree according to the graph exploration algorithm used to construct it. [ 18 ]
A cut or split is trivial when one of its two sides has only one vertex in it; every trivial cut is a split. A graph is said to be prime (with respect to splits) if it has no nontrivial splits. [2] Two splits are said to cross if each side of one split has a non-empty intersection with each side of the other split.