enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemann curvature tensor - Wikipedia

    en.wikipedia.org/wiki/Riemann_curvature_tensor

    In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor (after Bernhard Riemann and Elwin Bruno Christoffel) is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold (i.e., it is a tensor field).

  3. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Let be a smooth manifold and let be a one-parameter family of Riemannian or pseudo-Riemannian metrics. Suppose that it is a differentiable family in the sense that for any smooth coordinate chart, the derivatives v i j = ∂ ∂ t ( ( g t ) i j ) {\displaystyle v_{ij}={\frac {\partial }{\partial t}}{\big (}(g_{t})_{ij}{\big )}} exist and are ...

  4. Curvature of Riemannian manifolds - Wikipedia

    en.wikipedia.org/wiki/Curvature_of_Riemannian...

    Although individually, the Weyl tensor and Ricci tensor do not in general determine the full curvature tensor, the Riemann curvature tensor can be decomposed into a Weyl part and a Ricci part. This decomposition is known as the Ricci decomposition, and plays an important role in the conformal geometry of Riemannian manifolds.

  5. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    Every Riemannian symmetric space is homogeneous, and consequently is geodesically complete and has constant scalar curvature. However, Riemannian symmetric spaces also have a much stronger curvature property not possessed by most homogeneous Riemannian manifolds, namely that the Riemann curvature tensor and Ricci curvature are parallel.

  6. Scalar curvature - Wikipedia

    en.wikipedia.org/wiki/Scalar_curvature

    Given a Riemannian metric g, the scalar curvature Scal is defined as the trace of the Ricci curvature tensor with respect to the metric: [1] = ⁡. The scalar curvature cannot be computed directly from the Ricci curvature since the latter is a (0,2)-tensor field; the metric must be used to raise an index to obtain a (1,1)-tensor field in order to take the trace.

  7. Levi-Civita connection - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_connection

    In 1906, L. E. J. Brouwer was the first mathematician to consider the parallel transport of a vector for the case of a space of constant curvature. [4] [5] In 1917, Levi-Civita pointed out its importance for the case of a hypersurface immersed in a Euclidean space, i.e., for the case of a Riemannian manifold embedded in a "larger" ambient space ...

  8. Ricci decomposition - Wikipedia

    en.wikipedia.org/wiki/Ricci_decomposition

    In the mathematical fields of Riemannian and pseudo-Riemannian geometry, the Ricci decomposition is a way of breaking up the Riemann curvature tensor of a Riemannian or pseudo-Riemannian manifold into pieces with special algebraic properties. This decomposition is of fundamental importance in Riemannian and pseudo-Riemannian geometry.

  9. Cartan–Ambrose–Hicks theorem - Wikipedia

    en.wikipedia.org/wiki/Cartan–Ambrose–Hicks...

    In mathematics, the Cartan–Ambrose–Hicks theorem is a theorem of Riemannian geometry, according to which the Riemannian metric is locally determined by the Riemann curvature tensor, or in other words, behavior of the curvature tensor under parallel translation determines the metric.