enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemann curvature tensor - Wikipedia

    en.wikipedia.org/wiki/Riemann_curvature_tensor

    In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor (after Bernhard Riemann and Elwin Bruno Christoffel) is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold (i.e., it is a tensor field).

  3. Curvature form - Wikipedia

    en.wikipedia.org/wiki/Curvature_form

    For example, for the tangent bundle of a Riemannian manifold, the structure group is O(n) and Ω is a 2-form with values in the Lie algebra of O(n), i.e. the antisymmetric matrices. In this case the form Ω is an alternative description of the curvature tensor, i.e. (,) = (,),

  4. Curvature of Riemannian manifolds - Wikipedia

    en.wikipedia.org/wiki/Curvature_of_Riemannian...

    The three identities form a complete list of symmetries of the curvature tensor, i.e. given any tensor that satisfies the identities above, one could find a Riemannian manifold with such a curvature tensor at some point. Simple calculations show that such a tensor has ⁠ / ⁠ independent components.

  5. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    The Weyl tensor has the same basic symmetries as the Riemann tensor, but its 'analogue' of the Ricci tensor is zero: = = = = The Ricci tensor, the Einstein tensor, and the traceless Ricci tensor are symmetric 2-tensors:

  6. Ricci curvature - Wikipedia

    en.wikipedia.org/wiki/Ricci_curvature

    In differential geometry, the determination of lower bounds on the Ricci tensor on a Riemannian manifold would allow one to extract global geometric and topological information by comparison (cf. comparison theorem) with the geometry of a constant curvature space form.

  7. Sectional curvature - Wikipedia

    en.wikipedia.org/wiki/Sectional_curvature

    Since any Riemannian metric is parallel with respect to its Levi-Civita connection, this shows that the Riemann tensor of any constant-curvature space is also parallel. The Ricci tensor is then given by Ric = ( n − 1 ) κ g {\displaystyle \operatorname {Ric} =(n-1)\kappa g} and the scalar curvature is n ( n − 1 ) κ . {\displaystyle n(n-1 ...

  8. Scalar curvature - Wikipedia

    en.wikipedia.org/wiki/Scalar_curvature

    Given a Riemannian metric g, the scalar curvature Scal is defined as the trace of the Ricci curvature tensor with respect to the metric: [1] = ⁡. The scalar curvature cannot be computed directly from the Ricci curvature since the latter is a (0,2)-tensor field; the metric must be used to raise an index to obtain a (1,1)-tensor field in order to take the trace.

  9. Second fundamental form - Wikipedia

    en.wikipedia.org/wiki/Second_fundamental_form

    For general Riemannian manifolds one has to add the curvature of ambient space; if N is a manifold embedded in a Riemannian manifold (M,g) then the curvature tensor R N of N with induced metric can be expressed using the second fundamental form and R M, the curvature tensor of M: