Search results
Results from the WOW.Com Content Network
In computer science, an operator-precedence parser is a bottom-up parser that interprets an operator-precedence grammar.For example, most calculators use operator-precedence parsers to convert from the human-readable infix notation relying on order of operations to a format that is optimized for evaluation such as Reverse Polish notation (RPN).
Left corner parsing is a hybrid method that works bottom-up along the left edges of each subtree, and top-down on the rest of the parse tree. If a language grammar has multiple rules that may start with the same leftmost symbols but have different endings, then that grammar can be efficiently handled by a deterministic bottom-up parse but ...
Another method [8] is to build the parse forest as you go, augmenting each Earley item with a pointer to a shared packed parse forest (SPPF) node labelled with a triple (s, i, j) where s is a symbol or an LR(0) item (production rule with dot), and i and j give the section of the input string derived by this node. A node's contents are either a ...
It employs bottom-up parsing and dynamic programming. The standard version of CYK operates only on context-free grammars given in Chomsky normal form (CNF). However any context-free grammar may be algorithmically transformed into a CNF grammar expressing the same language (Sipser 1997).
Bottom-up parsing A parser can start with the input and attempt to rewrite it to the start symbol. Intuitively, the parser attempts to locate the most basic elements, then the elements containing these, and so on. LR parsers are examples of bottom-up parsers.
A canonical LR parser (also called a LR(1) parser) is a type of bottom-up parsing algorithm used in computer science to analyze and process programming languages.It is based on the LR parsing technique, which stands for "left-to-right, rightmost derivation in reverse."
In computer science, a Simple LR or SLR parser is a type of LR parser with small parse tables and a relatively simple parser generator algorithm. As with other types of LR(1) parser, an SLR parser is quite efficient at finding the single correct bottom-up parse in a single left-to-right scan over the input stream, without guesswork or backtracking.
One way to do this is by using a probabilistic context-free grammar (PCFG) which has a probability of each constituency rule, and modifying CKY to maximise probabilities when parsing bottom-up. [6] [7] [8] A further modification is the lexicalized PCFG, which assigns a head to each constituent and encodes rule for each lexeme in that head slot.