enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transmission line - Wikipedia

    en.wikipedia.org/wiki/Transmission_line

    They were developed by Oliver Heaviside who created the transmission line model, and are based on Maxwell's equations. Schematic representation of the elementary component of a transmission line. The transmission line model is an example of the distributed-element model. It represents the transmission line as an infinite series of two-port ...

  3. Telegrapher's equations - Wikipedia

    en.wikipedia.org/wiki/Telegrapher's_equations

    Equivalent circuit of an unbalanced transmission line (such as coaxial cable) where: 2/Z o is the trans-admittance of VCCS (Voltage Controlled Current Source), x is the length of transmission line, Z(s) ≡ Z o (s) is the characteristic impedance, T(s) is the propagation function, γ(s) is the propagation "constant", s ≡ j ω, and j 2 ≡ −1.

  4. Primary line constants - Wikipedia

    en.wikipedia.org/wiki/Primary_line_constants

    Equivalent circuit of a transmission line for the calculation of Z 0 from the primary line constants. The characteristic impedance of a transmission line, , is defined as the impedance looking into an infinitely long line. Such a line will never return a reflection since the incident wave will never reach the end to be reflected.

  5. Distributed-element model - Wikipedia

    en.wikipedia.org/wiki/Distributed-element_model

    Unlike the transmission line example, the need to apply the distributed-element model arises from the geometry of the setup, and not from any wave propagation considerations. [3] The model used here needs to be truly 3-dimensional (transmission line models are usually described by elements of a one-dimensional line).

  6. Characteristic impedance - Wikipedia

    en.wikipedia.org/wiki/Characteristic_impedance

    Characteristic impedance is determined by the geometry and materials of the transmission line and, for a uniform line, is not dependent on its length. The SI unit of characteristic impedance is the ohm. The characteristic impedance of a lossless transmission line is purely real, with no reactive component (see below).

  7. Reflection coefficient - Wikipedia

    en.wikipedia.org/wiki/Reflection_coefficient

    In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.

  8. Transposition (transmission lines) - Wikipedia

    en.wikipedia.org/wiki/Transposition...

    Transposition is the periodic swapping of positions of the conductors of a transmission line, in order to reduce crosstalk and otherwise improve transmission. In telecommunications this applies to balanced pairs whilst in power transmission lines three conductors are periodically transposed.

  9. Transfer length method - Wikipedia

    en.wikipedia.org/wiki/Transfer_length_method

    The Transfer Length Method or the "Transmission Line Model" (both abbreviated as TLM) is a technique used in semiconductor physics and engineering to determine the specific contact resistivity between a metal and a semiconductor.