enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Closed-loop transfer function - Wikipedia

    en.wikipedia.org/wiki/Closed-loop_transfer_function

    An example of a closed-loop block diagram, from which a transfer function may be computed, is shown below: The summing node and the G(s) and H(s) blocks can all be combined into one block, which would have the following transfer function: () = + ()

  3. Feedback linearization - Wikipedia

    en.wikipedia.org/wiki/Feedback_linearization

    Feedback linearization can be accomplished with systems that have relative degree less than . However, the normal form of the system will include zero dynamics (i.e., states that are not observable from the output of the system) that may be unstable. In practice, unstable dynamics may have deleterious effects on the system (e.g., it may be ...

  4. Nichols plot - Wikipedia

    en.wikipedia.org/wiki/Nichols_plot

    The Nichols plot is a plot used in signal processing and control design, named after American engineer Nathaniel B. Nichols. [ 1 ] [ 2 ] [ 3 ] It plots the phase response versus the response magnitude of a transfer function for any given frequency, and as such is useful in characterizing a system's frequency response .

  5. Root locus analysis - Wikipedia

    en.wikipedia.org/wiki/Root_locus_analysis

    The following MATLAB code will plot the root locus of the closed-loop transfer function as varies using the described manual method as well as the rlocus built-in function: % Manual method K_array = ( 0 : 0.1 : 220 ). ' ; % .' is a transpose.

  6. Closed-loop pole - Wikipedia

    en.wikipedia.org/wiki/Closed-loop_pole

    The open-loop transfer function is equal to the product of all transfer function blocks in the forward path in the block diagram. The closed-loop transfer function is obtained by dividing the open-loop transfer function by the sum of one and the product of all transfer function blocks throughout the negative feedback loop. The closed-loop ...

  7. Logistic map - Wikipedia

    en.wikipedia.org/wiki/Logistic_map

    Graphs of maps, especially those of one variable such as the logistic map, are key to understanding the behavior of the map. One of the uses of graphs is to illustrate fixed points, called points. Draw a line y = x (a 45° line) on the graph of the map. If there is a point where this 45° line intersects with the graph, that point is a fixed point.

  8. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    Typical state-space model with feedback. A common method for feedback is to multiply the output by a matrix K and setting this as the input to the system: () = (). Since the values of K are unrestricted the values can easily be negated for negative feedback. The presence of a negative sign (the common notation) is merely a notational one and ...

  9. Ackermann's formula - Wikipedia

    en.wikipedia.org/wiki/Ackermann's_Formula

    Ackermann's formula provides a direct way to calculate the necessary adjustments—specifically, the feedback gains—needed to move the system's poles to the target locations. This method, developed by Jürgen Ackermann , [ 2 ] is particularly useful for systems that don't change over time ( time-invariant systems ), allowing engineers to ...