enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of small groups - Wikipedia

    en.wikipedia.org/wiki/List_of_small_groups

    Each group is named by Small Groups library as G o i, where o is the order of the group, and i is the index used to label the group within that order. Common group names: Z n: the cyclic group of order n (the notation C n is also used; it is isomorphic to the additive group of Z/nZ) Dih n: the dihedral group of order 2n (often the notation D n ...

  3. List of finite simple groups - Wikipedia

    en.wikipedia.org/wiki/List_of_finite_simple_groups

    Isomorphisms: 2 B 2 (2) is the Frobenius group of order 20. Remarks: Suzuki group are Zassenhaus groups acting on sets of size (2 2n+1) 2 + 1, and have 4-dimensional representations over the field with 2 2n+1 elements. They are the only non-cyclic simple groups whose order is not divisible by 3. They are not related to the sporadic Suzuki group.

  4. Classification of finite simple groups - Wikipedia

    en.wikipedia.org/wiki/Classification_of_finite...

    In mathematics, the classification of finite simple groups (popularly called the enormous theorem [1] [2]) is a result of group theory stating that every finite simple group is either cyclic, or alternating, or belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six exceptions, called sporadic (the Tits group is sometimes regarded as a sporadic group ...

  5. Group (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Group_(mathematics)

    The set is called the underlying set of the group, and the operation is called the group operation or the group law. A group and its underlying set are thus two different mathematical objects. To avoid cumbersome notation, it is common to abuse notation by using the same symbol to denote both. This reflects also an informal way of thinking ...

  6. Finite group - Wikipedia

    en.wikipedia.org/wiki/Finite_group

    If n is squarefree, then any group of order n is solvable. Burnside's theorem, proved using group characters, states that every group of order n is solvable when n is divisible by fewer than three distinct primes, i.e. if n = p a q b, where p and q are prime numbers, and a and b are non-negative integers. By the Feit–Thompson theorem, which ...

  7. Order (group theory) - Wikipedia

    en.wikipedia.org/wiki/Order_(group_theory)

    The following partial converse is true for finite groups: if d divides the order of a group G and d is a prime number, then there exists an element of order d in G (this is sometimes called Cauchy's theorem). The statement does not hold for composite orders, e.g. the Klein four-group does not have an element of order

  8. List of transitive finite linear groups - Wikipedia

    en.wikipedia.org/wiki/List_of_transitive_finite...

    These groups are usually classified by some typical normal subgroup, this normal subgroup is denoted by G 0 and are written in the third column of the table. The notation 2 1+4 − stands for the extraspecial group of minus type of order 32 (i.e. the extraspecial group of order 32 with an odd number (namely one) of quaternion factor).

  9. List of space groups - Wikipedia

    en.wikipedia.org/wiki/List_of_space_groups

    In Fedorov symbol, the type of space group is denoted as s (symmorphic), h (hemisymmorphic), or a (asymmorphic). The number is related to the order in which Fedorov derived space groups. There are 73 symmorphic, 54 hemisymmorphic, and 103 asymmorphic space groups.