enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Join point - Wikipedia

    en.wikipedia.org/wiki/Join_point

    In computer science, a join point is a point in the control flow of a program where the control flow can arrive via two different paths. In particular, it's a basic block that has more than one predecessor. [1] In aspect-oriented programming a set of join points is called a pointcut.

  3. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...

  4. Fork–join model - Wikipedia

    en.wikipedia.org/wiki/Fork–join_model

    Implementations of the fork–join model will typically fork tasks, fibers or lightweight threads, not operating-system-level "heavyweight" threads or processes, and use a thread pool to execute these tasks: the fork primitive allows the programmer to specify potential parallelism, which the implementation then maps onto actual parallel execution. [1]

  5. Denavit–Hartenberg parameters - Wikipedia

    en.wikipedia.org/wiki/Denavit–Hartenberg...

    The system of six joint axes S i and five common normal lines A i,i+1 form the kinematic skeleton of the typical six degree-of-freedom serial robot. Denavit and Hartenberg introduced the convention that z-coordinate axes are assigned to the joint axes S i and x-coordinate axes are assigned to the common normals A i,i+1.

  6. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    For example, the second-order equation y′′ = −y can be rewritten as two first-order equations: y′ = z and z′ = −y. In this section, we describe numerical methods for IVPs, and remark that boundary value problems (BVPs) require a different set of tools. In a BVP, one defines values, or components of the solution y at more than one ...

  7. Feasible region - Wikipedia

    en.wikipedia.org/wiki/Feasible_region

    For example, if the feasible region is defined by the constraint set {x ≥ 0, y ≥ 0}, then the problem of maximizing x + y has no optimum since any candidate solution can be improved upon by increasing x or y; yet if the problem is to minimize x + y, then there is an optimum (specifically at (x, y) = (0, 0)).

  8. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    Furthermore, you only need to do O(n) extra work if an extra point is added to the data set, while for the other methods, you have to redo the whole computation. Another method is preferred when the aim is not to compute the coefficients of p(x), but only a single value p(a) at a point x = a not in the original data set.

  9. Fixed-point combinator - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_combinator

    The Y combinator is an implementation of a fixed-point combinator in lambda calculus. Fixed-point combinators may also be easily defined in other functional and imperative languages. The implementation in lambda calculus is more difficult due to limitations in lambda calculus. The fixed-point combinator may be used in a number of different areas: