Search results
Results from the WOW.Com Content Network
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
The problem is named after its historical application by Allied forces in World War II to the estimation of the monthly rate of German tank production from very limited data. This exploited the manufacturing practice of assigning and attaching ascending sequences of serial numbers to tank components (chassis, gearbox, engine, wheels), with some ...
Prometheus is a free software application used for event monitoring and alerting. [2] It records metrics in a time series database (allowing for high dimensionality) built using an HTTP pull model, with flexible queries and real-time alerting.
Histogram of 10,000 samples from a Gamma(2,2) distribution. Number of bins suggested by Scott's rule is 61, Doane's rule 21, and Sturges's rule 15. Sturges's rule is not based on any sort of optimisation procedure, like the Freedman–Diaconis rule or Scott's rule. It is simply posited based on the approximation of a normal curve by a binomial ...
V-optimal histograms are an example of a more "exotic" histogram. V-optimality is a Partition Rule which states that the bucket boundaries are to be placed as to minimize the cumulative weighted variance of the buckets. Implementation of this rule is a complex problem and construction of these histograms is also a complex process.
The left histogram appears to indicate that the upper half has a higher density than the lower half, whereas the reverse is the case for the right-hand histogram, confirming that histograms are highly sensitive to the placement of the anchor point. [6] Comparison of 2D histograms. Left. Histogram with anchor point at (−1.5, -1.5). Right.
A new approach to the problem of entropy evaluation is to compare the expected entropy of a sample of random sequence with the calculated entropy of the sample. The method gives very accurate results, but it is limited to calculations of random sequences modeled as Markov chains of the first order with small values of bias and correlations ...
Also referred to as frequency-based or counting-based, the simplest non-parametric anomaly detection method is to build a histogram with the training data or a set of known normal instances, and if a test point does not fall in any of the histogram bins mark it as anomalous, or assign an anomaly score to test data based on the height of the bin ...