Search results
Results from the WOW.Com Content Network
A logic gate is a device that performs a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, one that has, for instance, zero rise time and unlimited fan-out, or it may refer to a non-ideal physical device [1] (see ...
However, the assignment of logical 1 and logical 0 to high or low is arbitrary and is reversed in active-low or negative logic, where low is logical 1 while high is logical 0. The following diode logic gates work in both active-high or active-low logic, however the logical function they implement is different depending on what voltage level is ...
Rent's rule pertains to the organization of computing logic, specifically the relationship between the number of external signal connections to a logic block (i.e., the number of "pins") with the number of logic gates in the logic block, and has been applied to circuits ranging from small digital circuits to mainframe computers.
A digital circuit is typically constructed from small electronic circuits called logic gates that can be used to create combinational logic. Each logic gate is designed to perform a function of Boolean logic when acting on logic signals. A logic gate is generally created from one or more electrically controlled switches, usually transistors but ...
The XOR gate is dependent on timing. The logic OR gate is simple to make in dominoes, consisting of two domino paths in a Y-shape with the stem of the Y as the output. The complex piece is which gate is able to be added to OR to obtain a functionally complete set such that all logic gates can be represented.
XOR gate (sometimes EOR, or EXOR and pronounced as Exclusive OR) is a digital logic gate that gives a true (1 or HIGH) output when the number of true inputs is odd. An XOR gate implements an exclusive or ( ↮ {\displaystyle \nleftrightarrow } ) from mathematical logic ; that is, a true output results if one, and only one, of the inputs to the ...
The few systems that calculate the majority function on an even number of inputs are often biased towards "0" – they produce "0" when exactly half the inputs are 0 – for example, a 4-input majority gate has a 0 output only when two or more 0's appear at its inputs. [1] In a few systems, the tie can be broken randomly. [2]
In logical circuits, a simple adder can be made with an XOR gate to add the numbers, and a series of AND, OR and NOT gates to create the carry output. On some computer architectures, it is more efficient to store a zero in a register by XOR-ing the register with itself (bits XOR-ed with themselves are always zero) than to load and store the ...