enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    The corresponding center of curvature is the point Q at distance R along N, in the same direction if k is positive and in the opposite direction if k is negative. The circle with center at Q and with radius R is called the osculating circle to the curve γ at the point P.

  3. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Consider a circle in with center at the origin and radius . Gauss's circle problem asks how many points there are inside this circle of the form ( m , n ) {\displaystyle (m,n)} where m {\displaystyle m} and n {\displaystyle n} are both integers.

  4. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...

  5. Radius of convergence - Wikipedia

    en.wikipedia.org/wiki/Radius_of_convergence

    Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.

  6. Polar coordinate system - Wikipedia

    en.wikipedia.org/wiki/Polar_coordinate_system

    This can be simplified in various ways, to conform to more specific cases, such as the equation = for a circle with a center at the pole and radius a. [ 15 ] When r 0 = a or the origin lies on the circle, the equation becomes r = 2 a cos ⁡ ( φ − γ ) . {\displaystyle r=2a\cos(\varphi -\gamma ).}

  7. Central angle - Wikipedia

    en.wikipedia.org/wiki/Central_angle

    Angle AOB is a central angle. A central angle is an angle whose apex (vertex) is the center O of a circle and whose legs (sides) are radii intersecting the circle in two distinct points A and B. Central angles are subtended by an arc between those two points, and the arc length is the central angle of a circle of radius one (measured in radians). [1]

  8. Power of a point - Wikipedia

    en.wikipedia.org/wiki/Power_of_a_point

    The circle with center and radius () intersects circle orthogonal. Angle between two circles If the radius ρ {\displaystyle \rho } of the circle centered at P {\displaystyle P} is different from Π ( P ) {\displaystyle {\sqrt {\Pi (P)}}} one gets the angle of intersection φ {\displaystyle \varphi } between the two circles applying the Law of ...

  9. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    A circle circumference and radius are proportional. The area enclosed and the square of its radius are proportional. The constants of proportionality are 2 π and π respectively. The circle that is centred at the origin with radius 1 is called the unit circle. Thought of as a great circle of the unit sphere, it becomes the Riemannian circle.