Search results
Results from the WOW.Com Content Network
The post-increment and post-decrement operators increase (or decrease) the value of their operand by 1, but the value of the expression is the operand's value prior to the increment (or decrement) operation. In languages where increment/decrement is not an expression (e.g., Go), only one version is needed (in the case of Go, post operators only).
A simplified version of a typical iteration cycle in agile project management. The basic idea behind this method is to develop a system through repeated cycles (iterative) and in smaller portions at a time (incremental), allowing software developers to take advantage of what was learned during development of earlier parts or versions of the system.
When incremental computing is implemented by a tool that can implement it for a variety of different pieces of code automatically, that tool is an example of a program analysis tool for optimization. Incremental computing derives a new input/output pair from one or more old input/output relationships.
The "Passing the baton" pattern [3] [4] [5] proposed by Gregory R. Andrews is a generic scheme to solve many complex concurrent programming problems in which multiple processes compete for the same resource with complex access conditions (such as satisfying specific priority criteria or avoiding starvation). Given a shared resource, the pattern ...
The series of releases is referred to as “increments," with each increment providing more functionality to the customers. After the first increment, a core product is delivered, which can already be used by the customer. Based on customer feedback, a plan is developed for the next increments, and modifications are made accordingly.
In computer programming, the stride of an array (also referred to as increment, pitch or step size) is the number of locations in memory between beginnings of successive array elements, measured in bytes or in units of the size of the array's elements. The stride cannot be smaller than the element size but can be larger, indicating extra space ...
The register width of a processor determines the range of values that can be represented in its registers. Though the vast majority of computers can perform multiple-precision arithmetic on operands in memory, allowing numbers to be arbitrarily long and overflow to be avoided, the register width limits the sizes of numbers that can be operated on (e.g., added or subtracted) using a single ...
The problem is that the loop terminating condition (x != 1.1) tests for exact equality of two floating point values, and the way floating point values are represented in many computers will make this test fail, because they cannot represent the value 0.1 exactly, thus introducing rounding errors on each increment (cf. box).