enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    However, spherical geometry was not considered a full-fledged non-Euclidean geometry sufficient to resolve the ancient problem of whether the parallel postulate is a logical consequence of the rest of Euclid's axioms of plane geometry, because it requires another axiom to be modified.

  3. Shape of the universe - Wikipedia

    en.wikipedia.org/wiki/Shape_of_the_universe

    A global geometry is a local geometry plus a topology. It follows that a topology alone does not give a global geometry: for instance, Euclidean 3-space and hyperbolic 3-space have the same topology but different global geometries. As stated in the introduction, investigations within the study of the global structure of the universe include:

  4. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions ( theorems ) from these.

  5. Lists of uniform tilings on the sphere, plane, and hyperbolic ...

    en.wikipedia.org/wiki/Lists_of_uniform_tilings...

    In geometry, many uniform tilings on sphere, euclidean plane, and hyperbolic plane can be made by Wythoff construction within a fundamental triangle, (p q r), defined by internal angles as π/p, π/q, and π/r. Special cases are right triangles (p q 2).

  6. Elliptic geometry - Wikipedia

    en.wikipedia.org/wiki/Elliptic_geometry

    Because spherical elliptic geometry can be modeled as, for example, a spherical subspace of a Euclidean space, it follows that if Euclidean geometry is self-consistent, so is spherical elliptic geometry. Therefore it is not possible to prove the parallel postulate based on the other four postulates of Euclidean geometry.

  7. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle ) is called the reference plane (sometimes fundamental plane ).

  8. Plane (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Plane_(mathematics)

    In addition, the Euclidean geometry (which has zero curvature everywhere) is not the only geometry that the plane may have. The plane may be given a spherical geometry by using the stereographic projection. This can be thought of as placing a sphere tangent to the plane (just like a ball on the floor), removing the top point, and projecting the ...

  9. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    The basic elements of Euclidean plane geometry are points and lines. On the sphere, points are defined in the usual sense. On the sphere, points are defined in the usual sense. The analogue of the "line" is the geodesic , which is a great circle ; the defining characteristic of a great circle is that the plane containing all its points also ...