Search results
Results from the WOW.Com Content Network
In machine learning (ML), a learning curve (or training curve) is a graphical representation that shows how a model's performance on a training set (and usually a validation set) changes with the number of training iterations (epochs) or the amount of training data. [1]
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).
C, Fortran, R [7] R language, Python (by RPy), Perl (by Statistics::R module) R++: Zebrys 1.6.15 (8 December 2023 ()) [8] No Proprietary: CLI, GUI: C++, Qt R language: RKWard: RKWard community 0.7.3 (21 April 2022 ()) [9] Yes GNU GPL: CLI, GUI: C++, ECMAScript R language, Python (by RPy), Perl (by Statistics::R module) Revolution Analytics
In computer science, a logistic model tree (LMT) is a classification model with an associated supervised training algorithm that combines logistic regression (LR) and decision tree learning.
A learning curve is a graphical representation of the relationship between how proficient people are at a task and the amount of experience they have. Proficiency (measured on the vertical axis) usually increases with increased experience (the horizontal axis), that is to say, the more someone, groups, companies or industries perform a task, the better their performance at the task.
Illustration of gradient descent on a series of level sets. Gradient descent is based on the observation that if the multi-variable function is defined and differentiable in a neighborhood of a point , then () decreases fastest if one goes from in the direction of the negative gradient of at , ().
In the adaptive control literature, the learning rate is commonly referred to as gain. [2] In setting a learning rate, there is a trade-off between the rate of convergence and overshooting. While the descent direction is usually determined from the gradient of the loss function, the learning rate determines how big a step is taken in that ...