Search results
Results from the WOW.Com Content Network
One implementation can be described as arranging the data sequence in a two-dimensional array and then sorting the columns of the array using insertion sort. The worst-case time complexity of Shellsort is an open problem and depends on the gap sequence used, with known complexities ranging from O ( n 2 ) to O ( n 4/3 ) and Θ( n log 2 n ).
When the array contains only duplicates of a relatively small number of items, a constant-time perfect hash function can greatly speed up finding where to put an item 1, turning the sort from Θ(n 2) time to Θ(n + k) time, where k is the total number of hashes. The array ends up sorted in the order of the hashes, so choosing a hash function ...
Take an array of numbers "5 1 4 2 8", and sort the array from lowest number to greatest number using bubble sort. In each step, elements written in bold are being compared. Three passes will be required; First Pass ( 5 1 4 2 8 ) → ( 1 5 4 2 8 ), Here, algorithm compares the first two elements, and swaps since 5 > 1.
In Java, the Arrays.sort() methods use merge sort or a tuned quicksort depending on the datatypes and for implementation efficiency switch to insertion sort when fewer than seven array elements are being sorted. [29] The Linux kernel uses merge sort for its linked lists. [30]
The next pass, 3-sorting, performs insertion sort on the three subarrays (a 1, a 4, a 7, a 10), (a 2, a 5, a 8, a 11), (a 3, a 6, a 9, a 12). The last pass, 1-sorting, is an ordinary insertion sort of the entire array (a 1,..., a 12). As the example illustrates, the subarrays that Shellsort operates on are initially short; later they are longer ...
The heapsort algorithm can be divided into two phases: heap construction, and heap extraction. The heap is an implicit data structure which takes no space beyond the array of objects to be sorted; the array is interpreted as a complete binary tree where each array element is a node and each node's parent and child links are defined by simple arithmetic on the array indexes.
Bucket sort can be implemented with comparisons and therefore can also be considered a comparison sort algorithm. The computational complexity depends on the algorithm used to sort each bucket, the number of buckets to use, and whether the input is uniformly distributed. Bucket sort works as follows: Set up an array of initially empty "buckets".
For example, addresses could be sorted using the city as primary sort key, and the street as secondary sort key. If the sort key values are totally ordered , the sort key defines a weak order of the items: items with the same sort key are equivalent with respect to sorting.