Search results
Results from the WOW.Com Content Network
4-Hydroxyphenylpyruvate dioxygenase (HPPD), also known as α-ketoisocaproate dioxygenase (KIC dioxygenase), is an Fe(II)-containing non-heme oxygenase that catalyzes the second reaction in the catabolism of tyrosine - the conversion of 4-hydroxyphenylpyruvate into homogentisate.
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an enzyme found in both plants and animals, which catalyzes the catabolism of the amino acid tyrosine. [4] Preventing the breakdown of tyrosine has three negative consequences: the excess of tyrosine stunts growth; the plant suffers oxidative damage due to lack of tocopherols (vitamin E); and ...
4-Hydroxyphenylpyruvate (produced by transamination of tyrosine) is acted upon by the enzyme 4-hydroxyphenylpyruvate dioxygenase to yield homogentisate. [5] If active and present, the enzyme homogentisate 1,2-dioxygenase further degrades homogentisic acid to yield 4-maleylacetoacetic acid .
Tyrosinemia type III is a rare disorder caused by a deficiency of the enzyme 4-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27), encoded by the gene HPD. [2] This enzyme is abundant in the liver, and smaller amounts are found in the kidneys. It is one of a series of enzymes needed to break down tyrosine.
The mechanism of action of nitisinone involves inhibition of 4-Hydroxyphenylpyruvate dioxygenase (HPPD). [5] [6] This is a treatment for patients with Tyrosinemia type 1 as it prevents the formation of 4-Maleylacetoacetic acid and fumarylacetoacetic acid, which have the potential to be converted to succinyl acetone, a toxin that damages the liver and kidneys. [4]
In enzymology, a 4-hydroxymandelate synthase (EC 1.13.11.46) is an enzyme that catalyzes the chemical reaction. 4-hydroxyphenylpyruvate + O 2 4-hydroxymandelate + CO 2. Thus, the two substrates of this enzyme are 4-hydroxyphenylpyruvate and oxygen, whereas its two products are 4-hydroxymandelate and carbon dioxide.
4-Hydroxyphenylpyruvate:oxygen oxidoreductase may refer to: 4-hydroxyphenylpyruvate dioxygenase; 4-hydroxymandelate synthase
Prephenate is aromatized by prephenate dehydrogenase (Pdh) using NAD + as a cofactor to produce 4-hydroxyphenylpyruvate. 4-Hydroxyphenylpyruvate is then oxidized by 4-hydroxymandelate synthase (4HmaS) using oxygen to form 4-hydroxymandelate and hydrogen peroxide. 4HmaS is a non-heme iron-dependent dioxygenase. The reaction mechanism of this ...