Search results
Results from the WOW.Com Content Network
Molecular nanotechnology is a speculative subfield of nanotechnology that explores the potential to engineer molecular assemblers—machines capable of reorganizing matter at a molecular or atomic scale. [citation needed] Nanomedicine would make use of these nanorobots, introduced into the body, to repair or detect damages and infections ...
The environmental impact of nanotechnology is the possible effects that the use of nanotechnological materials and devices will have on the environment. [20] As nanotechnology is an emerging field, there is debate regarding to what extent industrial and commercial use of nanomaterials will affect organisms and ecosystems.
Nanotechnology is giving rise to nanographene batteries that can store energy more efficiently and weigh less. [26] Lithium-ion batteries have been the primary battery technology in electronics for the last decade, but the current limits in the technology make it difficult to densify batteries due to the potential dangers of heat and explosion ...
Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing properties of matter. This definition of nanotechnology includes all types of research and technologies that deal ...
They are defined as carrier-free submicron colloidal drug delivery systems with a mean particle size in the nanometer range. The primary importance of the formulation of drugs into nanocrystals is the increase in particle surface area in contact with the dissolution medium, therefore increasing bioavailability.
Nanotechnology has the potential to benefits all forms of work from daily life to medicine and biology. Despite these benefits, there are also health risks when it comes to human exposure to the nano material. Studies have shown that dangerous nano-particles can build up in the body after prolonged exposure.
Such nanorobots intended for use in medicine should be non-replicating, as replication would needlessly increase device complexity, reduce reliability, and interfere with the medical mission. Nanotechnology provides a wide range of new technologies for developing customized means to optimize the delivery of pharmaceutical drugs .
However, the most important application of targeted drug delivery is to treat cancerous tumors. In doing so, the passive method of targeting tumors takes advantage of the enhanced permeability and retention (EPR) effect. This is a situation specific to tumors that results from rapidly forming blood vessels and poor lymphatic drainage.