Search results
Results from the WOW.Com Content Network
Music theory analyzes the pitch, timing, and structure of music. It uses mathematics to study elements of music such as tempo, chord progression, form, and meter. The attempt to structure and communicate new ways of composing and hearing music has led to musical applications of set theory, abstract algebra and number theory.
Musical symbols are marks and symbols in musical notation that indicate various aspects of how a piece of music is to be performed. There are symbols to communicate information about many musical elements, including pitch, duration, dynamics, or articulation of musical notes; tempo, metre, form (e.g., whether sections are repeated), and details about specific playing techniques (e.g., which ...
A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...
The duration (note length or note value) is indicated by the form of the note-head or with the addition of a note-stem plus beams or flags. A stemless hollow oval is a whole note or semibreve, a hollow rectangle or stemless hollow oval with one or two vertical lines on both sides is a double whole note or breve.
Absolutely closed See H-closed Accessible See . Accumulation point See limit point. Alexandrov topology The topology of a space X is an Alexandrov topology (or is finitely generated) if arbitrary intersections of open sets in X are open, or equivalently, if arbitrary unions of closed sets are closed, or, again equivalently, if the open sets are the upper sets of a poset.
In mathematics—more specifically, in differential geometry—the musical isomorphism (or canonical isomorphism) is an isomorphism between the tangent bundle and the cotangent bundle of a Riemannian or pseudo-Riemannian manifold induced by its metric tensor.
The Oxford Companion to Music describes three interrelated uses of the term "music theory": The first is the "rudiments", that are needed to understand music notation (key signatures, time signatures, and rhythmic notation); the second is learning scholars' views on music from antiquity to the present; the third is a sub-topic of musicology ...
In topology, a branch of mathematics, a retraction is a continuous mapping from a topological space into a subspace that preserves the position of all points in that subspace. [1] The subspace is then called a retract of the original space.