enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    In Newtonian mechanics, momentum (pl.: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction.

  3. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    A body remains at rest, or in motion at a constant speed in a straight line, except insofar as it is acted upon by a force. At any instant of time, the net force on a body is equal to the rate at which the body's momentum is changing with time. If two bodies exert forces on each other, these forces have the same magnitude but opposite directions.

  4. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    The previous equations for planar motion can be used here: corollaries of momentum, angular momentum etc. can immediately follow by applying the above definitions. For any object moving in any path in a plane, = = ^ the following general results apply to the particle.

  5. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  6. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    Internal forces between the particles that make up a body do not contribute to changing the momentum of the body as there is an equal and opposite force resulting in no net effect. [3] The linear momentum of a rigid body is the product of the mass of the body and the velocity of its center of mass v cm. [1] [4] [5]

  7. Moment (physics) - Wikipedia

    en.wikipedia.org/wiki/Moment_(physics)

    The moment of force, or torque, is a first moment: =, or, more generally, .; Similarly, angular momentum is the 1st moment of momentum: =.Momentum itself is not a moment.; The electric dipole moment is also a 1st moment: = for two opposite point charges or () for a distributed charge with charge density ().

  8. König's theorem (kinetics) - Wikipedia

    en.wikipedia.org/wiki/König's_theorem_(kinetics)

    where is the mass of the rigid body; ¯ is the velocity of the center of mass of the rigid body, as viewed by an observer fixed in an inertial frame N; ¯ is the angular momentum of the rigid body about the center of mass, also taken in the inertial frame N; and is the angular velocity of the rigid body R relative to the inertial frame N. [3]

  9. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    If the body is at rest (v = 0), i.e. in its center-of-momentum frame (p = 0), we have E = E 0 and m = m 0; thus the energy–momentum relation and both forms of the mass–energy relation (mentioned above) all become the same. A more general form of relation holds for general relativity.