Search results
Results from the WOW.Com Content Network
number of characters and number of bytes, respectively COBOL: string length string: a decimal string giving the number of characters Tcl: ≢ string: APL: string.len() Number of bytes Rust [30] string.chars().count() Number of Unicode code points Rust [31]
The last index of the string to return, defaults to the last character. The first character of the string is assigned an index of 1. If either i or j is a negative value, it is interpreted the same as selecting a character by counting from the end of the string. Hence, a value of -1 is the same as selecting the last character of the string.
The variable z is used to hold the length of the longest common substring found so far. The set ret is used to hold the set of strings which are of length z. The set ret can be saved efficiently by just storing the index i, which is the last character of the longest common substring (of size z) instead of S[i-z+1..i].
A prefix of S is a substring S[1..i] for some i in range [1, l], where l is the length of S. A suffix of S is a substring S[i..l] for some i in range [1, l], where l is the length of S. An alignment of P to T is an index k in T such that the last character of P is aligned with index k of T.
The string spelled by the edges from the root to such a node is a longest repeated substring. The problem of finding the longest substring with at least k {\displaystyle k} occurrences can be solved by first preprocessing the tree to count the number of leaf descendants for each internal node, and then finding the deepest node with at least k ...
It first builds T 1 using the 1 st character, then T 2 using the 2 nd character, then T 3 using the 3 rd character, ..., T n using the n th character. You can find the following characteristics in a suffix tree that uses Ukkonen's algorithm: Implicit suffix tree T i+1 is built on top of implicit suffix tree T i.
The loop at the center of the function only works for palindromes where the length is an odd number. The function works for even-length palindromes by modifying the input string. The character '|' is inserted between every character in the inputs string, and at both ends. So the input "book" becomes "|b|o|o|k|".
The split point is at the end of a string (i.e. after the last character of a leaf node) The split point is in the middle of a string. The second case reduces to the first by splitting the string at the split point to create two new leaf nodes, then creating a new node that is the parent of the two component strings.