Search results
Results from the WOW.Com Content Network
A non-convex regular polygon is a regular star polygon. The most common example is the pentagram , which has the same vertices as a pentagon , but connects alternating vertices. For an n -sided star polygon, the Schläfli symbol is modified to indicate the density or "starriness" m of the polygon, as { n / m }.
Polygons have been known since ancient times. The regular polygons were known to the ancient Greeks, with the pentagram, a non-convex regular polygon (star polygon), appearing as early as the 7th century B.C. on a krater by Aristophanes, found at Caere and now in the Capitoline Museum. [40] [41]
Individual polygons are named (and sometimes classified) according to the number of sides, combining a Greek-derived numerical prefix with the suffix -gon, e.g. pentagon, dodecagon. The triangle, quadrilateral and nonagon are exceptions, although the regular forms trigon, tetragon, and enneagon are sometimes encountered as well.
A regular polygon with n sides can be constructed with ruler, compass, and angle trisector if and only if =, where r, s, k ≥ 0 and where the p i are distinct Pierpont primes greater than 3 (primes of the form +). [8]: Thm. 2 These polygons are exactly the regular polygons that can be constructed with Conic section, and the regular polygons ...
Simple polygons are sometimes called Jordan polygons, because they are Jordan curves; the Jordan curve theorem can be used to prove that such a polygon divides the plane into two regions. [8] Indeed, Camille Jordan 's original proof of this theorem took the special case of simple polygons (stated without proof) as its starting point. [ 9 ]
The following list of polygons, polyhedra and polytopes gives the names of various classes of polytopes and lists some specific examples. Polytope elements [ edit ]
The polytopes of rank 2 (2-polytopes) are called polygons. Regular polygons are equilateral and cyclic. A p-gonal regular polygon is represented by Schläfli symbol {p}. Many sources only consider convex polygons, but star polygons, like the pentagram, when considered, can also be regular. They use the same vertices as the convex forms, but ...
In the same paper he also solved the problem of determining which regular polygons are constructible: a regular polygon is constructible if and only if the number of its sides is the product of a power of two and any number of distinct Fermat primes (i.e., the sufficient conditions given by Gauss are also necessary). [44]