enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Divergent geometric series - Wikipedia

    en.wikipedia.org/wiki/Divergent_geometric_series

    It is useful to figure out which summation methods produce the geometric series formula for which common ratios. One application for this information is the so-called Borel-Okada principle: If a regular summation method assigns = to / for all in a subset of the complex plane, given certain restrictions on , then the method also gives the analytic continuation of any other function () = = on ...

  3. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .

  4. Divergence of the sum of the reciprocals of the primes

    en.wikipedia.org/wiki/Divergence_of_the_sum_of...

    The sum of the reciprocal of the primes increasing without bound. The x axis is in log scale, showing that the divergence is very slow. The red function is a lower bound that also diverges. The sum of the reciprocals of all prime numbers diverges; that is:

  5. Borel summation - Wikipedia

    en.wikipedia.org/wiki/Borel_summation

    This integral converges for all z ≥ 0, so the original divergent series is Borel summable for all such z. This function has an asymptotic expansion as z tends to 0 that is given by the original divergent series. This is a typical example of the fact that Borel summation will sometimes "correctly" sum divergent asymptotic expansions. Again, since

  6. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    is used for the series, and, if it is convergent, to its sum. This convention is similar to that which is used for addition: a + b denotes the operation of adding a and b as well as the result of this addition, which is called the sum of a and b. Any series that is not convergent is said to be divergent or to diverge.

  7. 1 + 2 + 3 + 4 + ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    Those methods work on oscillating divergent series, but they cannot produce a finite answer for a series that diverges to +∞. [6] Most of the more elementary definitions of the sum of a divergent series are stable and linear, and any method that is both stable and linear cannot sum 1 + 2 + 3 + ⋯ to a finite value (see § Heuristics below).

  8. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    The addition of two divergent series may yield a convergent series: for instance, the addition of a divergent series with a series of its terms times will yield a series of all zeros that converges to zero. However, for any two series where one converges and the other diverges, the result of their addition diverges.

  9. 1 + 2 + 4 + 8 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_4_%2B_8_%2B_%E...

    For the most well-known and straightforward sum concepts, including the fundamental convergent one, it is absurd that a series of positive terms could have a negative value. A similar phenomenon occurs with the divergent geometric series 1 − 1 + 1 − 1 + ⋯ {\displaystyle 1-1+1-1+\cdots } ( Grandi's series ), where a series of integers ...