Search results
Results from the WOW.Com Content Network
Mass spectral interpretation is the method employed to identify the chemical formula, characteristic fragment patterns and possible fragment ions from the mass spectra. [1] [2] Mass spectra is a plot of relative abundance against mass-to-charge ratio. It is commonly used for the identification of organic compounds from electron ionization mass ...
A mass spectrum is a type of plot of the ion signal as a function of the mass-to-charge ratio. These spectra are used to determine the elemental or isotopic signature of a sample, the masses of particles and of molecules, and to elucidate the chemical identity or structure of molecules and other chemical compounds. Discovery of Neon Isotopes
In the selected ion flow tube mass spectrometer, SIFT-MS, ions are generated in a microwave plasma ion source, usually from a mixture of laboratory air and water vapor. . From the formed plasma, a single ionic species is selected using a quadrupole mass filter to act as "precursor ions" (also frequently referred to as primary or reagent ions in SIFT-MS and other processes involving chemical ...
Chlorine dioxide is a chemical compound with the formula ClO 2 that exists as yellowish-green gas above 11 °C, a reddish-brown liquid between 11 °C and −59 °C, and as bright orange crystals below −59 °C. It is usually handled as an aqueous solution.
Electron ionization mass spectrum of toluene. Note parent peak corresponding to molecular mass M = 92 (C 7 H 8 +) and highest peak at M-1 = 91 (C 7 H 7 +, quasi-stable tropylium cation). A mass spectrum is a histogram plot of intensity vs. mass-to-charge ratio (m/z) in a chemical sample, [1] usually acquired using an instrument called a mass ...
In mass spectrometry, fragmentation is the dissociation of energetically unstable molecular ions formed from passing the molecules mass spectrum.These reactions are well documented over the decades and fragmentation patterns are useful to determine the molar weight and structural information of unknown molecules.
The symmetry of a carbon dioxide molecule is linear and centrosymmetric at its equilibrium geometry. The length of the carbon–oxygen bond in carbon dioxide is 116.3 pm, noticeably shorter than the roughly 140 pm length of a typical single C–O bond, and shorter than most other C–O multiply bonded functional groups such as carbonyls. [19]
The structure of dichlorine monoxide is similar to that of water and hypochlorous acid, with the molecule adopting a bent molecular geometry (due to the lone pairs on the oxygen atom) and resulting in C 2V molecular symmetry. The bond angle is slightly larger than normal, likely due to steric repulsion between the bulky chlorine atoms.