enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.

  3. Macaulay brackets - Wikipedia

    en.wikipedia.org/wiki/Macaulay_brackets

    The above example simply states that the function takes the value () for all x values larger than a. With this, all the forces acting on a beam can be added, with their respective points of action being the value of a. A particular case is the unit step function,

  4. Vortex sheet - Wikipedia

    en.wikipedia.org/wiki/Vortex_sheet

    The discontinuity in the tangential velocity means the flow has infinite vorticity on a vortex sheet. At high Reynolds numbers, vortex sheets tend to be unstable. In particular, they may exhibit Kelvin–Helmholtz instability. The formulation of the vortex sheet equation of motion is given in terms of a complex coordinate = +.

  5. Shocks and discontinuities (magnetohydrodynamics) - Wikipedia

    en.wikipedia.org/wiki/Shocks_and_discontinuities...

    In magnetohydrodynamics (MHD), shocks and discontinuities are transition layers where properties of a plasma change from one equilibrium state to another. The relation between the plasma properties on both sides of a shock or a discontinuity can be obtained from the conservative form of the MHD equations, assuming conservation of mass, momentum, energy and of .

  6. Talk:Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Talk:Classification_of...

    For example, my brother's red socks are not in the domain of a function of a real variable, but presumably my brother's red socks are not a discontinuity of such a function. Perhaps (in the case of real valued functions of a a real variable) the technicality is that "f(x) is continuous at x = a" is only defined for real numbers "a", so its ...

  7. Discontinuities of monotone functions - Wikipedia

    en.wikipedia.org/wiki/Discontinuities_of...

    Let be a real-valued monotone function defined on an interval. Then the set of discontinuities of the first kind is at most countable.. One can prove [5] [3] that all points of discontinuity of a monotone real-valued function defined on an interval are jump discontinuities and hence, by our definition, of the first kind.

  8. Nowhere continuous function - Wikipedia

    en.wikipedia.org/wiki/Nowhere_continuous_function

    In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain.If is a function from real numbers to real numbers, then is nowhere continuous if for each point there is some > such that for every >, we can find a point such that | | < and | () |.

  9. Macaulay's method - Wikipedia

    en.wikipedia.org/wiki/Macaulay's_method

    Comparing equations (iii) & (vii) and (iv) & (viii) we notice that due to continuity at point B, = and =. The above observation implies that for the two regions considered, though the equation for bending moment and hence for the curvature are different, the constants of integration got during successive integration of the equation for ...