enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inviscid flow - Wikipedia

    en.wikipedia.org/wiki/Inviscid_flow

    In fluid dynamics, inviscid flow is the flow of an inviscid fluid which is a fluid with zero viscosity. [1] The Reynolds number of inviscid flow approaches infinity as the viscosity approaches zero. When viscous forces are neglected, such as the case of inviscid flow, the Navier–Stokes equation can be simplified to a form known as the Euler ...

  3. No-slip condition - Wikipedia

    en.wikipedia.org/wiki/No-slip_condition

    The no-slip condition is an empirical assumption that has been useful in modelling many macroscopic experiments. It was one of three alternatives that were the subject of contention in the 19th century, with the other two being the stagnant-layer (a thin layer of stationary fluid on which the rest of the fluid flows) and the partial slip (a finite relative velocity between solid and fluid ...

  4. Potential flow - Wikipedia

    en.wikipedia.org/wiki/Potential_flow

    In flow regions where vorticity is known to be important, such as wakes and boundary layers, potential flow theory is not able to provide reasonable predictions of the flow. [1] Fortunately, there are often large regions of a flow where the assumption of irrotationality is valid which is why potential flow is used for various applications.

  5. Potential flow around a circular cylinder - Wikipedia

    en.wikipedia.org/wiki/Potential_flow_around_a...

    Thus we find the maximum speed in the flow, V = 2U, in the low pressure on the sides of the cylinder. A value of V > U is consistent with conservation of the volume of fluid. With the cylinder blocking some of the flow, V must be greater than U somewhere in the plane through the center of the cylinder and transverse to the flow.

  6. Fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Fluid_mechanics

    One example of this is the flow far from solid surfaces. In many cases, the viscous effects are concentrated near the solid boundaries (such as in boundary layers) while in regions of the flow field far away from the boundaries the viscous effects can be neglected and the fluid there is treated as it were inviscid (ideal flow).

  7. Fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Fluid_dynamics

    A flow that is not a function of time is called steady flow. Steady-state flow refers to the condition where the fluid properties at a point in the system do not change over time. Time dependent flow is known as unsteady (also called transient [8]). Whether a particular flow is steady or unsteady, can depend on the chosen frame of reference.

  8. Kutta–Joukowski theorem - Wikipedia

    en.wikipedia.org/wiki/Kutta–Joukowski_theorem

    Kutta–Joukowski theorem is an inviscid theory, but it is a good approximation for real viscous flow in typical aerodynamic applications. [2] Kutta–Joukowski theorem relates lift to circulation much like the Magnus effect relates side force (called Magnus force) to rotation. [3] However, the circulation here is not induced by rotation of the ...

  9. Shock-capturing method - Wikipedia

    en.wikipedia.org/wiki/Shock-capturing_method

    The Euler equations are the governing equations for inviscid flow. To implement shock-capturing methods, the conservation form of the Euler equations are used. For a flow without external heat transfer and work transfer (isoenergetic flow), the conservation form of the Euler equation in Cartesian coordinate system can be written as + + + = where the vectors U, F, G, and H are given by