enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2. Examples of a geometric sequence are powers r k of a fixed non-zero number r, such as 2 k and 3 k. The general form of a geometric sequence is , , , , , … where r is the common ratio and a is the initial value. The sum of a geometric progression's terms is ...

  3. Renard series - Wikipedia

    en.wikipedia.org/wiki/Renard_series

    Renard series are a system of preferred numbers dividing an interval from 1 to 10 into 5, 10, 20, or 40 steps. [1] This set of preferred numbers was proposed ca. 1877 by French army engineer Colonel Charles Renard [ 2 ] [ 3 ] [ 4 ] and reportedly published in an 1886 instruction for captive balloon troops, thus receiving the current name in ...

  4. Square pyramidal number - Wikipedia

    en.wikipedia.org/wiki/Square_pyramidal_number

    The number of 1 × 1 squares in the grid is n 2. The number of 2 × 2 squares in the grid is (n − 1) 2. These can be counted by counting all of the possible upper-left corners of 2 × 2 squares. The number of k × k squares (1 ≤ k ≤ n) in the grid is (n − k + 1) 2. These can be counted by counting all of the possible upper-left corners ...

  5. Arithmetico-geometric sequence - Wikipedia

    en.wikipedia.org/wiki/Arithmetico-geometric_sequence

    The nth element of an arithmetico-geometric sequence is the product of the nth element of an arithmetic sequence and the nth element of a geometric sequence. [1] An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications ...

  6. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .

  7. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.

  8. Bernoulli number - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_number

    In mathematics, the Bernoulli numbers B n are a sequence of rational numbers which occur frequently in analysis.The Bernoulli numbers appear in (and can be defined by) the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of m-th powers of the first n positive integers, in the Euler–Maclaurin formula, and in expressions for certain ...

  9. Geometric distribution - Wikipedia

    en.wikipedia.org/wiki/Geometric_distribution

    The geometric distribution is the only memoryless discrete probability distribution. [4] It is the discrete version of the same property found in the exponential distribution. [1]: 228 The property asserts that the number of previously failed trials does not affect the number of future trials needed for a success.