Search results
Results from the WOW.Com Content Network
In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function , the Taylor polynomial is the truncation at the order k {\textstyle k} of the Taylor series of the function.
The Taylor polynomials for ln(1 + x) only provide accurate approximations in the range −1 < x ≤ 1. For x > 1, Taylor polynomials of higher degree provide worse approximations. The Taylor approximations for ln(1 + x) (black). For x > 1, the approximations diverge. Pictured is an accurate approximation of sin x around the point x = 0. The ...
The approximating functors are required to be "k-excisive" – such functors are called polynomial functors by analogy with Taylor polynomials – which is a simplifying condition, and roughly means that they are determined by their behavior around k points at a time, or more formally are sheaves on the configuration space of k points in the ...
The partial sums of a power series are polynomials, the partial sums of the Taylor series of an analytic function are a sequence of converging polynomial approximations to the function at the center, and a converging power series can be seen as a kind of generalized polynomial with infinitely many terms. Conversely, every polynomial is a power ...
Dimension theorem for vector spaces (vector spaces, linear algebra) Dini's theorem ; Dirac's theorems (graph theory) Dirichlet's approximation theorem (Diophantine approximations) Dirichlet's theorem on arithmetic progressions (number theory) Dirichlet's unit theorem (algebraic number theory) Disintegration theorem (measure theory)
In mathematics, approximation theory is concerned with how functions can best be approximated with simpler functions, and with quantitatively characterizing the errors introduced thereby. What is meant by best and simpler will depend on the application.
Rivlin received in 1948 his bachelor's degree from Brooklyn College.After serving in the United States Army Air Force for eighteen months, he became a graduate student in mathematics at Harvard University, where he received in 1953 his Ph.D. with thesis advisor Joseph L. Walsh and thesis Overconvergent Taylor series and the zeroes of related polynomials. [3]
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.