Search results
Results from the WOW.Com Content Network
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
An α,β-epoxyketone reacts with hydrazine hydrate to yield an allylic alcohol. [7] In the synthesis of warburganal, a bioactive natural product, the α,β-epoxyketone is formed from a cyclic α,β-unsaturated ketone and in a separate step reacts under the classical Wharton olefin synthesis conditions to yield an allylic diol. [8]
In organic chemistry, carbonyl reduction is the conversion of any carbonyl group, usually to an alcohol. It is a common transformation that is practiced in many ways. [1] Ketones, aldehydes, carboxylic acids, esters, amides, and acid halides - some of the most pervasive functional groups, -comprise carbonyl compounds.
Catalytic oxidation with oxygen or air is a major application of green chemistry. There are however many oxidations that cannot be achieved so straightforwardly. The conversion of propylene to propylene oxide is typically effected using hydrogen peroxide, not oxygen or air.
To convert from / to / ... Oxygen: 1.382 0.03186 Ozone [2] 3.570 0.0487 Pentane: 19.26 0.146 ... Water: 5.536 0.03049 Xenon: 4.250 0.05105
The Wolff–Kishner reduction is a reaction used in organic chemistry to convert carbonyl functionalities into methylene groups. [1] [2] In the context of complex molecule synthesis, it is most frequently employed to remove a carbonyl group after it has served its synthetic purpose of activating an intermediate in a preceding step.
The epoxide product is formed by an intramolecular addition reaction in which a lone pair from the oxygen attacks the carbocation (6). Mechanism for the formation of the epoxide product. This reaction is exothermic due to the stability of nitrogen gas and the carbonyl containing compounds. This specific mechanism is supported by several ...
Methods for removing water include azeotropic distillation and trapping water with desiccants like aluminium oxide and molecular sieves. Steps assumed to be involved: protonation of the carbonyl oxygen, addition of the alcohol to the protonated carbonyl, protonolysis of the resulting hemiacetal or hemiketal, and addition of the second alcohol ...