Search results
Results from the WOW.Com Content Network
A concave mirror, or converging mirror, has a reflecting surface that is recessed inward (away from the incident light). Concave mirrors reflect light inward to one focal point. They are used to focus light. Unlike convex mirrors, concave mirrors show different image types depending on the distance between the object and the mirror.
Examples of sub-aperture corrector catadioptric telescopes include the Argunov–Cassegrain telescope, the Klevtsov–Cassegrain telescope and sub-aperture corrector Maksutovs, which use as a "secondary mirror" an optical group consisting of lens elements and sometimes mirrors designed to correct aberration, as well as Jones-Bird Newtonian ...
Real images can be produced by concave mirrors and converging lenses, only if the object is placed further away from the mirror/lens than the focal point, and this real image is inverted. As the object approaches the focal point the image approaches infinity, and when the object passes the focal point the image becomes virtual and is not ...
Diagram of a Mangin mirror. In optics, a Mangin mirror is a negative meniscus lens with the reflective surface on the rear side of the glass forming a curved mirror that reflects light without spherical aberration if certain conditions are met.
Catoptrics (from Ancient Greek: κατοπτρικός katoptrikós, "specular", [1] from Ancient Greek: κάτοπτρον katoptron "mirror" [2]) deals with the phenomena of reflected light and image-forming optical systems using mirrors. A catoptric system is also called a catopter (catoptre).
In July 2000, Falco and Hockney published "Optical Insights into Renaissance Art" in Optics & Photonics News, vol. 11, a detailed analysis of the likely use of concave mirrors in certain Renaissance paintings, particularly the Lotto painting. Experiments with a concave mirror (which technically is also a lens) of the calculated properties ...
AOL Mail welcomes Verizon customers to our safe and delightful email experience!
Most lenses are spherical lenses: their two surfaces are parts of the surfaces of spheres. Each surface can be convex (bulging outwards from the lens), concave (depressed into the lens), or planar (flat). The line joining the centres of the spheres making up the lens surfaces is called the axis of the lens. Typically the lens axis passes ...