enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. MPSolve - Wikipedia

    en.wikipedia.org/wiki/MPSolve

    MPSolve (Multiprecision Polynomial Solver) is a package for the approximation of the roots of a univariate polynomial. It uses the Aberth method, [1] combined with a careful use of multiprecision. [2] "Mpsolve takes advantage of sparsity, and has special hooks for polynomials that can be evaluated efficiently by straight-line programs" [3]

  3. Bairstow's method - Wikipedia

    en.wikipedia.org/wiki/Bairstow's_method

    Bairstow's approach is to use Newton's method to adjust the coefficients u and v in the quadratic + + until its roots are also roots of the polynomial being solved. The roots of the quadratic may then be determined, and the polynomial may be divided by the quadratic to eliminate those roots.

  4. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.

  5. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    Finding one root; Finding all roots; Finding roots in a specific region of the complex plane, typically the real roots or the real roots in a given interval (for example, when roots represents a physical quantity, only the real positive ones are interesting). For finding one root, Newton's method and other general iterative methods work ...

  6. Aberth method - Wikipedia

    en.wikipedia.org/wiki/Aberth_method

    The Aberth method, or Aberth–Ehrlich method or Ehrlich–Aberth method, named after Oliver Aberth [1] and Louis W. Ehrlich, [2] is a root-finding algorithm developed in 1967 for simultaneous approximation of all the roots of a univariate polynomial.

  7. Durand–Kerner method - Wikipedia

    en.wikipedia.org/wiki/Durand–Kerner_method

    In numerical analysis, the Weierstrass method or Durand–Kerner method, discovered by Karl Weierstrass in 1891 and rediscovered independently by Durand in 1960 and Kerner in 1966, is a root-finding algorithm for solving polynomial equations. [1] In other words, the method can be used to solve numerically the equation f(x) = 0,

  8. Laguerre's method - Wikipedia

    en.wikipedia.org/wiki/Laguerre's_method

    If x is a simple root of the polynomial , then Laguerre's method converges cubically whenever the initial guess, , is close enough to the root . On the other hand, when x 1 {\displaystyle \ x_{1}\ } is a multiple root convergence is merely linear, with the penalty of calculating values for the polynomial and its first and second derivatives at ...

  9. Jenkins–Traub algorithm - Wikipedia

    en.wikipedia.org/wiki/Jenkins–Traub_algorithm

    The Jenkins–Traub algorithm for polynomial zeros is a fast globally convergent iterative polynomial root-finding method published in 1970 by Michael A. Jenkins and Joseph F. Traub. They gave two variants, one for general polynomials with complex coefficients, commonly known as the "CPOLY" algorithm, and a more complicated variant for the ...