Search results
Results from the WOW.Com Content Network
It is defined as the difference between the 75th and 25th percentiles of the data. [2] [3] [4] To calculate the IQR, the data set is divided into quartiles, or four rank-ordered even parts via linear interpolation. [1] These quartiles are denoted by Q 1 (also called the lower quartile), Q 2 (the median), and Q 3 (also called the
If there are an even number of data points in the original ordered data set, split this data set exactly in half. The lower quartile value is the median of the lower half of the data. The upper quartile value is the median of the upper half of the data. This rule is employed by the TI-83 calculator boxplot and "1-Var Stats" functions.
In statistics, the quartile coefficient of dispersion is a descriptive statistic which measures dispersion and is used to make comparisons within and between data sets. Since it is based on quantile information, it is less sensitive to outliers than measures such as the coefficient of variation .
In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. [1] Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered.
The third quartile value for the original example above is determined by 11×(3/4) = 8.25, which rounds up to 9. The ninth value in the population is 15. 15 Fourth quartile Although not universally accepted, one can also speak of the fourth quartile. This is the maximum value of the set, so the fourth quartile in this example would be 20.
The 25th percentile is also known as the first quartile (Q 1), the 50th percentile as the median or second quartile (Q 2), and the 75th percentile as the third quartile (Q 3). For example, the 50th percentile (median) is the score below (or at or below, depending on the definition) which 50% of the scores in the distribution are found.
Robust measures of scale can be used as estimators of properties of the population, either for parameter estimation or as estimators of their own expected value.. For example, robust estimators of scale are used to estimate the population standard deviation, generally by multiplying by a scale factor to make it an unbiased consistent estimator; see scale parameter: estimation.
The deviation of each data point is calculated by subtracting the mean of the data set from the individual data point. Mathematically, the deviation d of a data point x in a data set with respect to the mean m is given by the difference: = This calculation represents the "distance" of a data point from the mean and provides information about ...