Search results
Results from the WOW.Com Content Network
Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...
Data preparation is the act of manipulating (or pre-processing) raw data (which may come from disparate data sources) into a form that can readily and accurately be analysed, e.g. for business purposes.
A common source for data is a data mart or data warehouse. Pre-processing is essential to analyze the multivariate data sets before data mining. The target set is then cleaned. Data cleaning removes the observations containing noise and those with missing data.
Preprocessing can refer to the following topics in computer science: Preprocessor , a program that processes its input data to produce output that is used as input to another program like a compiler Data pre-processing , used in machine learning and data mining to make input data easier to work with
Data processing is the collection and manipulation of digital data to produce meaningful information. [1] Data processing is a form of information processing , which is the modification (processing) of information in any manner detectable by an observer.
Most preprocessors are specific to a particular data processing task (e.g., compiling the C language). A preprocessor may be promoted as being general purpose, meaning that it is not aimed at a specific usage or programming language, and is intended to be used for a wide variety of text processing tasks.
This process is called body recomposition, and research suggests it's a much better indicator of health than weight alone. So, it's worth keeping up your gains even if it makes tracking weight ...
Data cleansing or data cleaning is the process of identifying and correcting (or removing) corrupt, inaccurate, or irrelevant records from a dataset, table, or database. It involves detecting incomplete, incorrect, or inaccurate parts of the data and then replacing, modifying, or deleting the affected data. [ 1 ]