enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    The regression line goes through the center of mass point, (¯, ¯), if the model includes an intercept term (i.e., not forced through the origin). The sum of the residuals is zero if the model includes an intercept term: = ^ =

  3. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    A model with exactly one explanatory variable is a simple linear regression; a model with two or more explanatory variables is a multiple linear regression. [1] This term is distinct from multivariate linear regression , which predicts multiple correlated dependent variables rather than a single dependent variable.

  4. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    Regression models predict a value of the Y variable given known values of the X variables. Prediction within the range of values in the dataset used for model-fitting is known informally as interpolation. Prediction outside this range of the data is known as extrapolation. Performing extrapolation relies strongly on the regression assumptions.

  5. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  6. Design matrix - Wikipedia

    en.wikipedia.org/wiki/Design_matrix

    The design matrix contains data on the independent variables (also called explanatory variables), in a statistical model that is intended to explain observed data on a response variable (often called a dependent variable). The theory relating to such models uses the design matrix as input to some linear algebra : see for example linear regression.

  7. Multilevel model - Wikipedia

    en.wikipedia.org/wiki/Multilevel_model

    An example could be a model of student performance that contains measures for individual students as well as measures for classrooms within which the students are grouped. These models can be seen as generalizations of linear models (in particular, linear regression), although they can also extend to non-linear models. These models became much ...

  8. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    The residual is the difference between the observed value and the estimated value of the quantity of interest (for example, a sample mean). The distinction is most important in regression analysis , where the concepts are sometimes called the regression errors and regression residuals and where they lead to the concept of studentized residuals .

  9. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    This simple model is an example of binary logistic regression, and has one explanatory variable and a binary categorical variable which can assume one of two categorical values. Multinomial logistic regression is the generalization of binary logistic regression to include any number of explanatory variables and any number of categories.