Search results
Results from the WOW.Com Content Network
In some species, hemolymph has other uses than just being a blood analogue. As the insect or arachnid grows, the hemolymph works something like a hydraulic system, enabling the insect or arachnid to expand segments before they are sclerotized. It can also be used hydraulically as a means of assisting movement, such as in arachnid locomotion.
The Purkinje fibers, named for Jan Evangelista Purkyně, (English: / p ɜːr ˈ k ɪ n dʒ i / pur-KIN-jee; [1] Czech: [ˈpurkɪɲɛ] ⓘ; Purkinje tissue or subendocardial branches) are located in the inner ventricular walls of the heart, [2] just beneath the endocardium in a space called the subendocardium.
The heart is a muscular organ situated in the mediastinum.It consists of four chambers, four valves, two main arteries (the coronary arteries), and the conduction system. The left and right sides of the heart have different functions: the right side receives de-oxygenated blood through the superior and inferior venae cavae and pumps blood to the lungs through the pulmonary artery, and the left ...
Cardiac physiology or heart function is the study of healthy, unimpaired function of the heart: involving blood flow; myocardium structure; the electrical conduction system of the heart; the cardiac cycle and cardiac output and how these interact and depend on one another.
The heart is a muscular organ found in humans and other animals. This organ pumps blood through the blood vessels. [1] Heart and blood vessels together make the circulatory system. [2] The pumped blood carries oxygen and nutrients to the tissue, while carrying metabolic waste such as carbon dioxide to the lungs. [3]
The endocardial cushions are thought to arise from a subset of endothelial cells that undergo epithelial-mesenchymal transition, a process whereby these cells break cell-to-cell contacts and migrate into the cardiac jelly (towards the interior of the heart tube). These migrated cells form the "swellings" called the endocardial cushions seen in ...
The heart's cardiac skeleton comprises four dense connective tissue rings that encircle the mitral and tricuspid atrioventricular (AV) canals and extend to the origins of the pulmonary trunk and aorta. This provides crucial support and structure to the heart while also serving to electrically isolate the atria from the ventricles. [1]
Gap junctions connect the cytoplasms of neighboring cells electrically allowing cardiac action potentials to spread between cardiac cells by permitting the passage of ions between cells, producing depolarization of the heart muscle. [3] [2] All of these junctions work together as a single unit called the area composita. [2]