enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data preprocessing - Wikipedia

    en.wikipedia.org/wiki/Data_Preprocessing

    Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...

  3. Data preparation - Wikipedia

    en.wikipedia.org/wiki/Data_preparation

    Given the variety of data sources (e.g. databases, business applications) that provide data and formats that data can arrive in, data preparation can be quite involved and complex. There are many tools and technologies [5] that are used for data preparation. The cost of cleaning the data should always be balanced against the value of the ...

  4. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    Data understanding; Data preparation; Modeling; Evaluation; Deployment; or a simplified process such as (1) Pre-processing, (2) Data Mining, and (3) Results Validation. Polls conducted in 2002, 2004, 2007 and 2014 show that the CRISP-DM methodology is the leading methodology used by data miners. [15] [16] [17] [18]

  5. Preprocessing - Wikipedia

    en.wikipedia.org/wiki/Preprocessing

    Preprocessing can refer to the following topics in computer science: Preprocessor , a program that processes its input data to produce output that is used as input to another program like a compiler Data pre-processing , used in machine learning and data mining to make input data easier to work with

  6. Preprocessor - Wikipedia

    en.wikipedia.org/wiki/Preprocessor

    In computer science, a preprocessor (or precompiler) [1] is a program that processes its input data to produce output that is used as input in another program. The output is said to be a preprocessed form of the input data, which is often used by some subsequent programs like compilers.

  7. Artificial intelligence engineering - Wikipedia

    en.wikipedia.org/wiki/Artificial_intelligence...

    Data acquisition and preparation are critical stages regardless of the development method chosen, as the performance of any AI system relies heavily on high-quality, representative data. For systems built from scratch, engineers must gather comprehensive datasets that cover all aspects of the problem domain, ensuring enough diversity and ...

  8. Quantum machine learning - Wikipedia

    en.wikipedia.org/wiki/Quantum_machine_learning

    The starting point in learning theory is typically a concept class, a set of possible concepts. Usually a concept is a function on some domain, such as {,}. For example, the concept class could be the set of disjunctive normal form (DNF) formulas on n bits or the set of Boolean circuits of some constant depth. The goal for the learner is to ...

  9. Data binning - Wikipedia

    en.wikipedia.org/wiki/Data_binning

    Data binning, also called data discrete binning or data bucketing, is a data pre-processing technique used to reduce the effects of minor observation errors. The original data values which fall into a given small interval, a bin , are replaced by a value representative of that interval, often a central value ( mean or median ).