Search results
Results from the WOW.Com Content Network
There are other cellular automata which are inspired by the Game of Life, but which do not fit the definition of "life-like" given in this article, because their neighborhoods are larger than the Moore neighborhood, or they are defined on three-dimensional lattices, or they use a different lattice topology. For example:
Conway's Game of Life is an example of an outer totalistic cellular automaton with cell values 0 and 1; outer totalistic cellular automata with the same Moore neighborhood structure as Life are sometimes called life-like cellular automata.
Cellular automata on a two-dimensional grid that can be described in this way are known as Life-like cellular automata. Another common Life-like automaton, Highlife, is described by the rule B36/S23, because having six neighbours, in addition to the original game's B3/S23 rule, causes a birth. HighLife is best known for its frequently occurring ...
Like Life, Rule 110 with a particular repeating background pattern is known to be Turing complete. [2] This implies that, in principle, any calculation or computer program can be simulated using this automaton. An example run of the rule 110 cellular automaton over 256 iterations, starting from a single cell.
The evolution of the replicator. Highlife is a cellular automaton similar to Conway's Game of Life.It was devised in 1994 by Nathan Thompson. It is a two-dimensional, two-state cellular automaton in the "Life family" and is described by the rule B36/S23; that is, a cell is born if it has 3 or 6 neighbors and survives if it has 2 or 3 neighbors.
A sample autonomous pattern from Lenia. An animation showing the movement of a glider in Lenia. Lenia is a family of cellular automata created by Bert Wang-Chak Chan. [1] [2] [3] It is intended to be a continuous generalization of Conway's Game of Life, with continuous states, space and time.
The number of live cells per generation of the pattern shown above demonstrating the monotonic nature of Life without Death. Life without Death is a cellular automaton, similar to Conway's Game of Life and other Life-like cellular automaton rules. In this cellular automaton, an initial seed pattern grows according to the same rule as in Conway ...
Class 1: Cellular automata which rapidly converge to a uniform state. Examples are rules 0, 32, 160 and 232. Class 2: Cellular automata which rapidly converge to a repetitive or stable state. Examples are rules 4, 108, 218 and 250. Class 3: Cellular automata which appear to remain in a random state. Examples are rules 22, 30, 126, 150, 182.