Search results
Results from the WOW.Com Content Network
The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for >, and its analytic continuation elsewhere.
The zeta function values listed below include function values at the negative even numbers (s = −2, −4, etc.), for which ζ(s) = 0 and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane.
The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series = = = + + +Leonhard Euler considered this series in the 1730s for real values of s, in conjunction with his solution to the Basel problem.
In mathematics, the Riemann–von Mangoldt formula, named for Bernhard Riemann and Hans Carl Friedrich von Mangoldt, describes the distribution of the zeros of the Riemann zeta function. The formula states that the number N(T) of zeros of the zeta function with imaginary part greater than 0 and less than or equal to T satisfies
The method of Eratosthenes used to sieve out prime numbers is employed in this proof.. This sketch of a proof makes use of simple algebra only. This was the method by which Euler originally discovered the formula.
where ζ(s) is the Riemann zeta function (which is undefined for s = 1). The multiplicities of distinct prime factors of X are independent random variables. The Riemann zeta function being the sum of all terms for positive integer k, it appears thus as the normalization of the Zipf distribution. The terms "Zipf distribution" and the "zeta ...
Gourdon (2004), The 10 13 first zeros of the Riemann Zeta function, and zeros computation at very large height; Odlyzko, A. (1992), The 10 20-th zero of the Riemann zeta function and 175 million of its neighbors This unpublished book describes the implementation of the algorithm and discusses the results in detail.
It is an even function, and real analytic for real values. It follows from the fact that the Riemann–Siegel theta function and the Riemann zeta function are both holomorphic in the critical strip, where the imaginary part of t is between −1/2 and 1/2, that the