Search results
Results from the WOW.Com Content Network
In mathematics, a phase portrait is a geometric representation of the orbits of a dynamical system in the phase plane. Each set of initial conditions is represented by a different point or curve. Phase portraits are an invaluable tool in studying dynamical systems. They consist of a plot of typical trajectories in the phase space.
It is usually a combination of a Bode magnitude plot, expressing the magnitude (usually in decibels) of the frequency response, and a Bode phase plot, expressing the phase shift. As originally conceived by Hendrik Wade Bode in the 1930s, the plot is an asymptotic approximation of the frequency response, using straight line segments .
In applied mathematics, in particular the context of nonlinear system analysis, a phase plane is a visual display of certain characteristics of certain kinds of differential equations; a coordinate plane with axes being the values of the two state variables, say (x, y), or (q, p) etc. (any pair of variables).
A plot of position and momentum variables as a function of time is sometimes called a phase plot or a phase diagram. However the latter expression, " phase diagram ", is more usually reserved in the physical sciences for a diagram showing the various regions of stability of the thermodynamic phases of a chemical system, which consists of ...
Instead of computing the RQA measures of the entire recurrence plot, they can be computed in small windows moving over the recurrence plot along the LOI. This provides time-dependent RQA measures which allow detecting, e.g., chaos-chaos transitions. [9] [1] Note: the choice of the size of the window can strongly influence the measure trend.
van der Pol oscillator phase plot, with μ varying from 0.1 to 3.0. The green lines are the x-nullclines. The same oscillator phase plot, but with Liénard transform. The Van der Pol Oscillator simulated with the Brain Dynamics Toolbox [1] Evolution of the limit cycle in the phase plane.
The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector , the state vector . If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.
A Nichols plot. The Nichols plot is a plot used in signal processing and control design, named after American engineer Nathaniel B. Nichols. [1] [2] [3] It plots the phase response versus the response magnitude of a transfer function for any given frequency, and as such is useful in characterizing a system's frequency response.