Search results
Results from the WOW.Com Content Network
The coherence time, usually designated τ, is calculated by dividing the coherence length by the phase velocity of light in a medium; approximately given by = where λ is the central wavelength of the source, Δν and Δλ is the spectral width of the source in units of frequency and wavelength respectively, and c is the speed of light in vacuum.
Laser linewidth from high-power high-gain pulsed laser oscillators, comprising line narrowing optics, is a function of the geometrical and dispersive features of the laser cavity. [29] To a first approximation the laser linewidth, in an optimized cavity, is directly proportional to the beam divergence of the emission multiplied by the inverse ...
A mode-locked laser is capable of emitting extremely short pulses on the order of tens of picoseconds down to less than 10 femtoseconds.These pulses will repeat at the round trip time, that is, the time that it takes light to complete one round trip between the mirrors comprising the resonator.
For example, a system with a 3 GHz carrier frequency and a pulse width of 1 μs will have a carrier period of approximately 333 ps. Each transmitted pulse will contain about 3000 carrier cycles and the velocity and range ambiguity values for such a system would be:
There are two closely related measures. The pulse repetition interval measures the time between the leading edges of two pulses but is normally expressed as the pulse repetition frequency (PRF), the number of pulses in a given time, typically a second. The duty cycle expresses the pulse width as a fraction or percentage of one complete cycle.
The corresponding time-domain function for the phase of an exponential chirp is the integral of the frequency: = + = + = + ( ()) where is the initial phase (at =). The corresponding time-domain function for a sinusoidal exponential chirp is the sine of the phase in radians: x ( t ) = sin [ ϕ 0 + 2 π f 0 ( T k t T ln ( k ...
FROG is simply a spectrally resolved autocorrelation, which allows the use of a phase-retrieval algorithm to retrieve the precise pulse intensity and phase vs. time. It can measure both very simple and very complex ultrashort laser pulses, and it has measured the most complex pulse ever measured without the use of a reference pulse.
A frequency comb or spectral comb is a spectrum made of discrete and regularly spaced spectral lines.In optics, a frequency comb can be generated by certain laser sources.. A number of mechanisms exist for obtaining an optical frequency comb, including periodic modulation (in amplitude and/or phase) of a continuous-wave laser, four-wave mixing in nonlinear media, or stabilization of the pulse ...