enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    The Frobenius norm is an extension of the Euclidean norm to and comes from the Frobenius inner product on the space of all matrices. The Frobenius norm is sub-multiplicative and is very useful for numerical linear algebra. The sub-multiplicativity of Frobenius norm can be proved using Cauchy–Schwarz inequality.

  3. Matrix regularization - Wikipedia

    en.wikipedia.org/wiki/Matrix_regularization

    One example is the squared Frobenius norm, which can be viewed as an -norm acting either entrywise, or on the singular values of the matrix: = ‖ ‖ = | | = ⁡ =. In the multivariate case the effect of regularizing with the Frobenius norm is the same as the vector case; very complex models will have larger norms, and, thus, will be penalized ...

  4. Frobenius normal form - Wikipedia

    en.wikipedia.org/wiki/Frobenius_normal_form

    On the other hand, this makes the Frobenius normal form rather different from other normal forms that do depend on factoring the characteristic polynomial, notably the diagonal form (if A is diagonalizable) or more generally the Jordan normal form (if the characteristic polynomial splits into linear factors). For instance, the Frobenius normal ...

  5. Trace (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Trace_(linear_algebra)

    The Frobenius inner product and norm arise frequently in matrix calculus and statistics. The Frobenius inner product may be extended to a hermitian inner product on the complex vector space of all complex matrices of a fixed size, by replacing B by its complex conjugate.

  6. Frobenius inner product - Wikipedia

    en.wikipedia.org/wiki/Frobenius_inner_product

    Hadamard product (matrices) Hilbert–Schmidt inner product; Kronecker product; Matrix analysis; Matrix multiplication; Matrix norm; Tensor product of Hilbert spaces – the Frobenius inner product is the special case where the vector spaces are finite-dimensional real or complex vector spaces with the usual Euclidean inner product

  7. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    ⁠ For example, in the above example the null space is spanned by the last row of ⁠ ⁠ and the range is spanned by the first three columns of ⁠. As a consequence, the rank of ⁠ M {\displaystyle \mathbf {M} } ⁠ equals the number of non-zero singular values which is the same as the number of non-zero diagonal elements in Σ ...

  8. Total least squares - Wikipedia

    en.wikipedia.org/wiki/Total_least_squares

    where [] is the augmented matrix with E and F side by side and ‖ ‖ is the Frobenius norm, the square root of the sum of the squares of all entries in a matrix and so equivalently the square root of the sum of squares of the lengths of the rows or columns of the matrix. This can be rewritten as

  9. Orthogonal Procrustes problem - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_Procrustes_problem

    where ‖ ‖ denotes the Frobenius norm. This is a special case of Wahba's problem (with identical weights; instead of considering two matrices, in Wahba's problem the columns of the matrices are considered as individual vectors). Another difference is that Wahba's problem tries to find a proper rotation matrix instead of just an orthogonal one.