Search results
Results from the WOW.Com Content Network
Some authors have reported significant porosity in nanocellulose films, [52] [46] [53] which seems to be in contradiction with high oxygen barrier properties, whereas Aulin et al. [49] measured a nanocellulose film density close to density of crystalline cellulose (cellulose Iß crystal structure, 1.63 g/cm 3) [54] indicating a very dense film ...
Cellulose is the most abundant organic polymer on Earth. [6] The cellulose content of cotton fibre is 90%, that of wood is 40–50%, and that of dried hemp is approximately 57%. [7] [8] [9] Cellulose is mainly used to produce paperboard and paper. Smaller quantities are converted into a wide variety of derivative products such as cellophane and ...
A solution of lithium chloride in DMAc (LiCl/DMAc) can dissolve cellulose. Unlike many other cellulose solvents, LiCl/DMAc gives a molecular dispersion, i.e. a "true solution". For this reason, it is used in gel permeation chromatography to determine the molar mass distribution of cellulose samples.
Carboxymethyl cellulose (CMC) or cellulose gum [1] is a cellulose derivative with carboxymethyl groups (-CH 2-COOH) bound to some of the hydroxyl groups of the glucopyranose monomers that make up the cellulose backbone. It is often used in its sodium salt form, sodium carboxymethyl cellulose. It used to be marketed under the name Tylose, a ...
The molar mass of atoms of an element is given by the relative atomic mass of the element multiplied by the molar mass constant, M u ≈ 1.000 000 × 10 −3 kg/mol ≈ 1 g/mol. For normal samples from Earth with typical isotope composition, the atomic weight can be approximated by the standard atomic weight [ 2 ] or the conventional atomic weight.
At IUPAC standard temperature and pressure (0 °C and 100 kPa), dry air has a density of approximately 1.2754 kg/m 3. At 20 °C and 101.325 kPa, dry air has a density of 1.2041 kg/m 3. At 70 °F and 14.696 psi, dry air has a density of 0.074887 lb/ft 3.
For atoms or molecules of a well-defined molar mass M (in kg/mol), the number density can sometimes be expressed in terms of their mass density ρ m (in kg/m 3) as =. Note that the ratio M/N A is the mass of a single atom or molecule in kg.
For a substance X with a specific volume of 0.657 cm 3 /g and a substance Y with a specific volume 0.374 cm 3 /g, the density of each substance can be found by taking the inverse of the specific volume; therefore, substance X has a density of 1.522 g/cm 3 and substance Y has a density of 2.673 g/cm 3. With this information, the specific ...