Search results
Results from the WOW.Com Content Network
Such thermometers are usually calibrated so that one can read the temperature simply by observing the level of the fluid in the thermometer. Another type of thermometer that is not really used much in practice, but is important from a theoretical standpoint, is the gas thermometer. Other important devices for measuring temperature include:
A thermometer is a device that measures temperature (the hotness or coldness of an object) ... Today there is an absolute thermodynamic temperature scale ...
For experimental physics, hotness means that, when comparing any two given bodies in their respective separate thermodynamic equilibria, any two suitably given empirical thermometers with numerical scale readings will agree as to which is the hotter of the two given bodies, or that they have the same temperature. [54]
An ideal thermometer is a thermometer which does not measurably change the state of the system it is measuring. Assuming that the unchanging reading of an ideal thermometer is a valid tagging system for the equivalence classes of a set of equilibrated thermodynamic systems, then the systems are in thermal equilibrium, if a thermometer gives the ...
The accuracy of a simple wet-bulb thermometer depends on how fast air passes over the bulb and how well the thermometer is shielded from the radiant temperature of its surroundings. Speeds up to 5,000 ft/min (~60 mph, 25.4 m/s) are best but it may be dangerous to move a thermometer at that speed.
This thermometer functions by Charles's Law. Charles's Law states that when the temperature of a gas increases, so does the volume. [2] Using Charles's Law, the temperature can be measured by knowing the volume of gas at a certain temperature by using the formula, written below. Translating it to the correct levels of the device that is holding ...
“Wait for the man who randomly tears up because he’s so in love," Madison Perrott wrote alongside the sweet clip of her boyfriend of over a year
The history of thermodynamics is a fundamental strand in the history of physics, the history of chemistry, and the history of science in general. Due to the relevance of thermodynamics in much of science and technology, its history is finely woven with the developments of classical mechanics, quantum mechanics, magnetism, and chemical kinetics, to more distant applied fields such as ...